Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 975786, 2022.
Article in English | MEDLINE | ID: mdl-36394032

ABSTRACT

For more than 60 years, efforts to develop mating-based mosquito control technologies have largely failed to produce solutions that are both effective and scalable, keeping them out of reach of most governments and communities in disease-impacted regions globally. High pest suppression levels in trials have yet to fully translate into broad and effective Aedes aegypti control solutions. Two primary challenges to date-the need for complex sex-sorting to prevent female releases, and cumbersome processes for rearing and releasing male adult mosquitoes-present significant barriers for existing methods. As the host range of Aedes aegypti continues to advance into new geographies due to increasing globalisation and climate change, traditional chemical-based approaches are under mounting pressure from both more stringent regulatory processes and the ongoing development of insecticide resistance. It is no exaggeration to state that new tools, which are equal parts effective and scalable, are needed now more than ever. This paper describes the development and field evaluation of a new self-sexing strain of Aedes aegypti that has been designed to combine targeted vector suppression, operational simplicity, and cost-effectiveness for use in disease-prone regions. This conditional, self-limiting trait uses the sex-determination gene doublesex linked to the tetracycline-off genetic switch to cause complete female lethality in early larval development. With no female progeny survival, sex sorting is no longer required, eliminating the need for large-scale mosquito production facilities or physical sex-separation. In deployment operations, this translates to the ability to generate multiple generations of suppression for each mosquito released, while being entirely self-limiting. To evaluate these potential benefits, a field trial was carried out in densely-populated urban, dengue-prone neighbourhoods in Brazil, wherein the strain was able to suppress wild mosquito populations by up to 96%, demonstrating the utility of this self-sexing approach for biological vector control. In doing so, it has shown that such strains offer the critical components necessary to make these tools highly accessible, and thus they harbour the potential to transition mating-based approaches to effective and sustainable vector control tools that are within reach of governments and at-risk communities who may have only limited resources.

2.
BMC Biotechnol ; 22(1): 5, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35086540

ABSTRACT

BACKGROUND: The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt-susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. RESULTS: Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non-Bt 'refuge' crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. CONCLUSIONS: This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.


Subject(s)
Hemolysin Proteins , Insecticides , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crop Protection , Crops, Agricultural/genetics , Endotoxins , Female , Hemolysin Proteins/genetics , Insecticides/pharmacology , Male , Plants, Genetically Modified/metabolism , Spodoptera/genetics , Zea mays/genetics
3.
Ecol Evol ; 6(15): 5118-28, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27551370

ABSTRACT

Understanding temporal variation in selection in natural populations is necessary to accurately estimate rates of divergence and macroevolutionary processes. Temporal variation in the strength and direction of selection on sex-specific traits can also explain stasis in male and female phenotype and sexual dimorphism. I investigated changes in strength and form of viability selection (via predation by wasps) in a natural population of male and female tree crickets over 4 years. I found that although the source of viability stayed the same, viability selection affected males and females differently, and the strength, direction and form of selection varied considerably from year to year. In general, males experienced significant linear selection and significant selection differentials more frequently than females, and different male traits experienced significant linear selection each year. This yearly variation resulted in overall weak but significant convex selection on a composite male trait that mostly represented leg size and wing width. Significant selection on female phenotype was uncommon, but when it was detected, it was invariably nonlinear. Significant concave selection on traits representing female body size was observed in some years, as the largest and smallest females were preyed on less (the largest may have been too heavy for flying wasps to carry). Viability selection was significantly different between males and females in 2 of 4 years. Although viability selection via predation has the potential to drive phenotypic change and sexual dimorphism, temporal variation in selection may maintain stasis.

4.
Evolution ; 69(2): 419-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25491169

ABSTRACT

The potential viability costs of sexually selected traits are central to hypotheses about the evolution of exaggerated traits. Estimates of these costs in nature can come from selection analyses using multiple components of fitness during the same time frame. For a population of tree crickets (Oecanthus nigricornis: Gryllidae), we analyzed viability and sexual selection on male traits by comparing Oecanthus prey of a solitary wasp to those that survived, and comparing mating individuals to solitary males. We measured forewing width (sexually size dimorphic and used for singing), head width, pronotum length, and size of hind jumping legs as potential targets of selection. Supporting the hypothesis that sexually selected traits have viability costs, we found that significant directional sexual selection for wider heads was opposed by significant viability selection for narrower heads. Nonlinear selection revealed that individuals with wide heads and small legs were most attractive, but individuals with narrow heads, large legs, and intermediate pronotum length were most likely to survive. Successful mating may put males at greater risk of predation, especially if copulation per se is risky. Such balancing selection in tree crickets may have constrained the evolution of sexual dimorphism in head size-a condition seen in other gryllids and orthopterans.


Subject(s)
Gryllidae/physiology , Selection, Genetic , Sexual Behavior, Animal/physiology , Animals , Biological Evolution , Female , Gryllidae/anatomy & histology , Male , Phenotype , Predatory Behavior , Sex Characteristics , Wasps/physiology
5.
PLoS One ; 9(10): e110298, 2014.
Article in English | MEDLINE | ID: mdl-25330090

ABSTRACT

Female-biased predation is an uncommon phenomenon in nature since males of many species take on riskier behaviours to gain more mates. Several species of sphecid wasps have been observed taking more female than male prey, and it is not fully understood why. The solitary sphecid Isodontia mexicana catches more adult female tree cricket (Oecanthus nigricornis) prey. Previous work has shown that, although female tree crickets are larger and thus likely to be more valuable as prey than males, body size alone cannot fully explain why wasps take more females. We tested the hypothesis that wasps catch adult female tree crickets more often because bearing eggs impedes a female's ability to escape predation. We compared female survivors to prey of I. mexicana, and found that females carrying more eggs were significantly more likely to be caught by wasps, regardless of their body size and jumping leg mass. We also conducted laboratory experiments where females' jumping responses to a simulated attack were measured and compared to her egg load and morphology. We found a significant negative relationship between egg load and jumping ability, and a positive relationship between body size and jumping ability. These findings support the hypothesis that ovarian eggs are a physical handicap that contributes to female-biased predation in this system. Predation on the most fecund females may have ecological-evolutionary consequences such as collapse of prey populations or selection for alternate life history strategies and behaviours.


Subject(s)
Gryllidae/physiology , Predatory Behavior/physiology , Zygote/physiology , Animals , Female , Male , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...