Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 5(23): 6635-6646, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38024290

ABSTRACT

In the present work, a series of metal nanoparticle-decorated carbogels (M-DCs) was synthesized starting from beads of parent metal-crosslinked alginate aerogels (M-CAs). M-CAs contained Ca(ii), Ni(ii), Cu(ii), Pd(ii) and Pt(iv) ions and were converted to M-DCs by pyrolysis under a N2 atmosphere up to pyrolysis temperatures of TP = 600 °C. The textural properties of M-CAs are found to depend on the crosslinking ion, yielding fibrous pore networks with a high specific mesoporous volume and specific surface area SV (SV ∼ 480-687 m2 g-1) for M-CAs crosslinked with hard cations, Ca(ii), Ni(ii) and Cu(ii), and comparably loose networks with increased macroporosity and lower specific surface (SV ∼ 240-270 m2 g-1) for Pd(ii) and Pt(iv) crosslinked aerogels. The pyrolysis of M-CAs resulted in two simultaneously occurring processes: changes in the solid backbone and the growth of metal/metal oxide nanoparticles (NPs). The thermogravimetric analysis (TGA) showed a significant influence of the crosslinking cation on the decomposition mechanism and associated change in textural properties. Scanning electron microscopy-backscattered electron imaging (SEM-BSE) and X-ray diffraction revealed that metal ions (molecularly dispersed in the parent aerogels) formed nanoparticles composed of elementary metals and metal oxides in varying ratios over the course of pyrolytic treatment. Increasing the TP led to generally larger nanoparticles. The pyrolysis of the nickel-crosslinked aerogel (Ni-CA) preserved, to a large extent, the mesoporous structure and resulted in the evolution of fine (∼14 nm) homogeneously dispersed Ni/NiO nanoparticles. Overall, this work presents a green approach for synthesizing metal-nanoparticle containing carbon materials, useful in emerging technologies related to heterogeneous catalysis and electrocatalysis, among others.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37110896

ABSTRACT

In comparison to conventional nano-infiltration approaches, the atomic layer deposition (ALD) technology exhibits greater potential in the fabrication of inverse opals (IOs) for photocatalysts. In this study, TiO2 IO and ultra-thin films of Al2O3 on IO were successfully deposited using thermal or plasma-assisted ALD and vertical layer deposition from a polystyrene (PS) opal template. SEM/EDX, XRD, Raman, TG/DTG/DTA-MS, PL spectroscopy, and UV Vis spectroscopy were used for the characterization of the nanocomposites. The results showed that the highly ordered opal crystal microstructure had a face-centered cubic (FCC) orientation. The proposed annealing temperature efficiently removed the template, leaving the anatase phase IO, which provided a small contraction in the spheres. In comparison to TiO2/Al2O3 plasma ALD, TiO2/Al2O3 thermal ALD has a better interfacial charge interaction of photoexcited electron-hole pairs in the valence band hole to restrain recombination, resulting in a broad spectrum with a peak in the green region. This was demonstrated by PL. Strong absorption bands were also found in the UV regions, including increased absorption due to slow photons and a narrow optical band gap in the visible region. The results from the photocatalytic activity of the samples show decolorization rates of 35.4%, 24.7%, and 14.8%, for TiO2, TiO2/Al2O3 thermal, and TiO2/Al2O3 plasma IO ALD samples, respectively. Our results showed that ultra-thin amorphous ALD-grown Al2O3 layers have considerable photocatalytic activity. The Al2O3 thin film grown by thermal ALD has a more ordered structure compared to the one prepared by plasma ALD, which explains its higher photocatalytic activity. The declined photocatalytic activity of the combined layers was observed due to the reduced electron tunneling effect resulting from the thinness of Al2O3.

3.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080051

ABSTRACT

In the current research, surface-modified SiO2 nanoparticles were used upon immersion in an applied base fluid (ethylene glycol:water = 1:1). The atomic layer deposition method (ALD) was introduced to obtain a thin layer of TiO2 to cover the surface of SiO2 particles. After the ALD modification, the TiO2 content was monitored by energy dispersive X-ray spectroscopy (EDS). Transmission electron microscopy (TEM) and FT-IR spectroscopy were applied for the particle characterization. The nanofluids contained 0.5, 1.0, and 1.5 volume% solid particles and zeta potential measurements were examined in terms of colloid stability. A rotation viscosimeter and thermal conductivity analyzer were used to study the nanofluids' rheological properties and thermal conductivity. These two parameters were investigated in the temperature range of 20 °C and 60 °C. Based on the results, the thin TiO2 coating significant impacted these parameters.

4.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808062

ABSTRACT

In this paper, we present a study on thermal conductivity and viscosity of nanofluids containing novel atomic layer deposition surface-modified carbon nanosphere (ALD-CNS) and carbon nanopowder (ALD-CNP) core-shell nanocomposites. The nanocomposites were produced by atomic layer deposition of amorphous TiO2. The nanostructures were characterised by scanning (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetry/differential thermal analysis (TG/DTA) and X-ray powder diffraction (XRD). High-concentration, stable nanofluids were prepared with 1.5, 1.0 and 0.5 vol% nanoparticle content. The thermal conductivity and viscosity of the nanofluids were measured, and their stability was evaluated with Zeta potential measurements. The ALD-CNS enhanced the thermal conductivity of the 1:5 ethanol:water mixture by 4.6% with a 1.5 vol% concentration, and the viscosity increased by 37.5%. The ALD-CNS increased the thermal conductivity of ethylene-glycol by 10.8, whereas the viscosity increased by 15.9%. The use of a surfactant was unnecessary due to the ALD-deposited TiO2 layer.

5.
Molecules ; 27(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335154

ABSTRACT

Graphene films were grown by chemical vapor deposition on Cu foil. The obtained samples were characterized by Raman spectroscopy, ellipsometry, X-ray photoelectron spectroscopy and electron back-scatter diffraction. We discuss the time-dependent changes in the samples, estimate the thickness of emerging Cu2O beneath the graphene and check the orientation-dependent affinity to oxidation of distinct Cu grains, which also governs the manner in which the initial strong Cu-graphene coupling and strain in the graphene lattice is released. Effects of electropolishing on the quality and the Raman response of the grown graphene layers are studied by microtexture polarization analysis. The obtained data are compared with the Raman signal of graphene after transfer on glass substrate revealing the complex interaction of graphene with the Cu substrate.

6.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641462

ABSTRACT

In this work core/shell composite polymer/TiO2 nanofibers and from those TiO2 nanotubes were prepared. First, poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) fibers were synthetized by electrospinning. They were covered with a 100 nm thick amorphous TiO2 layer by atomic layer deposition at 50 °C. Later the polymer core was removed by two different methods: dissolution and annealing. In the case of dissolution in water, the as-prepared TiO2 nanotubes remained amorphous, while when annealing was used to remove the polymers, the TiO2 crystallized in anatase form. Due to this, the properties of amorphous and crystalline TiO2 nanotubes with exactly the same structure and morphology could be compared. The samples were investigated by SEM-EDX, ATR-IR, UV-Vis, XRD and TG/DTA-MS. Finally, the photocatalytic properties of the TiO2 nanotubes were studied by decomposing methyl-orange dye under UV light. According to the results, crystalline anatase TiO2 nanotubes reached the photocatalytic performance of P25, while amorphous TiO2 nanotubes had observable photocatalytic activity.

7.
Phys Chem Chem Phys ; 23(10): 6116-6127, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33683233

ABSTRACT

Determining binary phase diagrams for nanoparticles proves to be a very difficult task regardless if it is tried either by computer simulations, theoretical considerations or experiments. In this work, using 3D Object Stochastic Kinetic Modelling Framework (3DO-SKMF) computer simulations, we reveal some of the reasons why this is the case. First of all, even the expressions "phase diagram" and "phase composition" are usually not well-defined. We show the two different types of phase diagrams that are rarely distinguished. For phase separating nanoparticles, one diagram shows the equilibrium phase compositions in two-phase state while the other represents if the system is in an alloyed or in a separated state. We calculate both diagrams for the case of binary Janus nanoparticles and show their dependences on size and average composition. The equilibrium compositions of the phases change with both the size and the average composition of the particle. This means that the use of 3D phase diagrams is unavoidable even if the size of the particle is fixed. The careful investigation of the simulation results reveals the essential role that the interfaces play in the behaviour of the system hence in the shape of the phase diagrams. We also point out that the methods used to determine the phase compositions in nanoparticles have a substantial influence on the details of both experimentally and theoretically constructed phase diagrams.

8.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535415

ABSTRACT

Extending the absorption range of TiO2 nanofibers to visible light is a great improvement of the photocatalytic property of TiO2. In this study, TiO2/WO3/C/N nanofibers were prepared by electrospinning using precursors soluble in water then annealing in argon. Titanium(IV) bis(ammonium lactato)dihydroxide (TiBALDH) and ammonium metatungstate (AMT) were used as the precursor for TiO2 and WO3 respectively. Different volume ratios of the precursors were added to a solution of PVP before electrospinning. The fibers were studied by XPS, SEM-EDX, TEM, FTIR, XRD, Raman spectroscopy and UV-VIS diffuse reflectance spectroscopy (DRS). The photocatalytic degradation of methylene blue by the fibers in visible light was investigated. The fibers had anatase TiO2 and monoclinic WO3. Based on UV-VIS DRS and Kubelka-Munk function the fibers could absorb visible light. Moreover, 100% TiBALDH had an indirect band gap of 2.9 eV, and the band gap decreased with increase in AMT, i.e., for 0% TiBALDH, band gap was 2.4 eV. The fibers degraded methylene blue dye in visible light, and 90% TiBALDH had the highest photocatalytic activity, i.e., it degraded 40% of the dye after 240 min.

9.
Rev Sci Instrum ; 92(1): 015120, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514212

ABSTRACT

In this work, we report the development of a measurement chamber linked with a quadrupole mass spectrometer (QMS) for in situ investigation of the effect of thin film cracking on the gas permeation of coated flexible polymeric substrates. The chamber enables the establishment of a bulged state of the substrate/coating system, which causes the cracking of the coating layer. The increase in the gas permeation rate due to the presence of cracks can be monitored precisely using the QMS without movement or re-clamping of the samples between each measurement step. This method eliminates the probability of uncontrollable mechanical changes in the sample, and with the mass spectrometer, high sensitivity, reliability, and reproducibility of the experimental data become available.

10.
Nanomaterials (Basel) ; 10(6)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503247

ABSTRACT

Porous gold nanoparticles (PGNs) are usually prepared in an immobilized form on a solid substrate, which is not practical in many applications. In this work, a simple method is reported for the preparation and stabilization of mesoporous gold particles of a few hundred nanometers in size in aqueous suspension. Nanoparticles of Ag-Au alloy were fabricated on CaF 2 and Si/SiO 2 substrates by the solid-state dewetting method. Silver was selectively dissolved (dealloyed), and the resulting porous gold nanoparticles were chemically removed from the substrate either in a concerted step with dealloying, or in a subsequent step. Nitric acid was used for the one-step dealloying and detachment of the particles from CaF 2 substrate. The consecutive use of HNO 3 and HF resulted in the dealloying and the subsequent detachment of the particles from Si/SiO 2 substrate. The PGNs were recovered from the aqueous suspensions by centrifugation. The Au content of the suspensions was monitored by using elemental analysis (ICP-OES), and recovery was optimized. The morphology and the optical characteristics of the support-free PGNs were analyzed by scanning electron microscopy (SEM), dynamic light scattering spectroscopy (DLS), and near-infrared spectrophotometry (NIR). The obtained PGNs are spherical disk-shaped with a mean particle size of 765 ± 149 nm. The suspended, support-free PGNs display an ideally narrow dipole plasmon peak at around 1450 nm in the NIR spectral region. Thus, the new colloidal PGNs are ideal candidates for biomedical applications, for instance photothermal therapy.

11.
Int J Mol Sci ; 21(4)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075293

ABSTRACT

In this article, the capability of encoding information using a homologous series of monodisperse monomethoxypolyethylene glycols (mPEG), with a number of ethylene oxide units ranging from nEO = 5 to 8, and monodisperse linear aliphatic isocyanates containing a number of CH2 units from 3 to 7, is demonstrated. The "click" reaction of the two corresponding homologous series yielded 20 different isocyanate end-capped polyethylene glycol derivatives (mPEG-OCONHR) whose sodiated adduct ion's nominal m/z values spanned from 360 to 548, providing an average ca. 8 m/z unit for the storage of one-bit information. These mPEG-OCONHR oligomers were then used to encode information in binary sequences using a 384-well MALDI sample plate and employing the common dried-droplet sample preparation method capable of encoding 20 bit, i.e., 2.5 byte information in one spot, was employed. The information stored in the spots was read by MALDI-TOF MS using the m/z value of the corresponding mPEG-OCONHR oligomers. The capability of the method to store data was demonstrated by writing and reading a text file, visualizing a small picture and capturing a short audio file written in Musical Instrument Digital Interface (MIDI) sequence. Due to the very large similarities in the chemical structures of the encoding oligomers and their "easy to be ionized" property, as well as their very similar ionization efficiencies, the MALDI-TOF MS signal intensities from each compound was so strong and unambiguous that complete decoding could be performed in each case. In addition, the set of the proposed encoding oligomers can be further extended to attain higher bit "densities".


Subject(s)
Click Chemistry , Information Storage and Retrieval , Isocyanates/chemistry , Polyethylene Glycols/chemistry , Ethanol/chemistry , Humans , Ions/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
12.
Materials (Basel) ; 12(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30987035

ABSTRACT

Vertically aligned carbon nanotubes (VACNTs or "CNT forest") were decorated with semiconductor particles (TiO2 and ZnO) by atomic layer deposition (ALD). Both the structure and morphology of the components were systematically studied using scanning (SEM) and high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray diffraction (XRD) methods. Characterization results revealed that the decoration was successful in the whole bulk of VACNTs. The effect of a follow-up heat treatment was also investigated and its effect on the structure was proved. It was attested that atomic layer deposition is a suitable technique for the fabrication of semiconductor/vertically aligned carbon nanotubes composites. Regarding their technological importance, we hope that semiconductor/CNT forest nanocomposites find potential application in the near future.

13.
Sci Rep ; 7(1): 4337, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659578

ABSTRACT

Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

14.
ACS Appl Mater Interfaces ; 9(7): 6273-6281, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28145115

ABSTRACT

Nanoporous gold nanoparticles (NPG-NPs) with controlled particle size and pore size are fabricated via a combination of solid-state dewetting and a subsequent dealloying process. Because of the combined effects of size and porosity, the NPG-NPs exhibit greater plasmonic tunability and significantly higher local field enhancement as compared to solid NPs. The effects of the nanoscale porosity and pore size on the optical extinction are investigated for the NPG-NPs with different particle sizes experimentally and theoretically. The influences of both porosity and pore size on the plasmonic properties are very complicated and clearly different for small particles with dominated dipole mode and large particles with dominated quadrupole mode. Au/Al2O3 hybrid porous NPs with controlled porosity and composition ratio are fabricated through plasma-enhanced atomic layer deposition of Al2O3 into the porous structure. In the Au/Al2O3 hybrid porous NPs, both Au and Al2O3 components are bicontinuously percolated over the entire structure. A further red shift of the plasmon peak is observed in the hybrid NPs due to the change of the environmental refractive index. The high tunability of the plasmonic resonances in the NPG-NPs and the hybrid porous NPs can be very useful for many applications in sensing biological and organic molecules.

15.
Nanoscale Res Lett ; 6(1): 189, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21711697

ABSTRACT

Hydrogenated multilayers (MLs) of a-Si/a-Ge have been analysed to establish the reasons of H release during annealing that has been seen to bring about structural modifications even up to well-detectable surface degradation. Analyses carried out on single layers of a-Si and a-Ge show that H is released from its bond to the host lattice atom and that it escapes from the layer much more efficiently in a-Ge than in a-Si because of the smaller binding energy of the H-Ge bond and probably of a greater weakness of the Ge lattice. This should support the previous hypothesis that the structural degradation of a-Si/a-Ge MLs primary starts with the formation of H bubbles in the Ge layers.

16.
Science ; 306(5703): 1913-5, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15591196

ABSTRACT

We observed that diffuse interfaces sharpen rather than broaden in completely miscible ideal binary systems. This is shown in situ during heat treatments at gradually increasing temperatures by scattering of synchrotron radiation in coherent Mo/V multilayers containing initially diffuse interfaces. This effect provides a useful tool for the improvement of interfaces and offers a way to fabricate better x-ray or neutron mirrors, microelectronic devices, or multilayers with giant magnetic resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...