Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 72(12): 4001-4014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973660

ABSTRACT

BACKGROUND: Regulation of alternative splicing is a new therapeutic approach in cancer. The programmed cell death receptor 1 (PD-1) is an immunoinhibitory receptor expressed on immune cells that binds to its ligands, PD-L1 and PD-L2 expressed by cancer cells forming a dominant immune checkpoint pathway in the tumour microenvironment. Targeting this pathway using blocking antibodies (nivolumab and pembrolizumab) is the mainstay of anti-cancer immunotherapies, restoring the function of exhausted T cells. PD-1 is alternatively spliced to form isoforms that are either transmembrane signalling receptors (flPD1) that mediate T cell death by binding to the ligand, PD-L1 or an alternatively spliced, soluble, variant that lacks the transmembrane domain. METHODS: We used PCR and western blotting on primary peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, IL-2 ELISA, flow cytometry, co-culture of melanoma and cholangiocarcinoma cells, and bioinformatics analysis and molecular cloning to examine the mechanism of splicing of PD1 and its consequence. RESULTS: The soluble form of PD-1, generated by skipping exon 3 (∆Ex3PD1), was endogenously expressed in PBMCs and T cells and prevents cancer cell-mediated T cell repression. Multiple binding sites of SRSF1 are adjacent to PD-1 exon 3 splicing sites. Overexpression of phosphomimic SRSF1 resulted in preferential expression of flPD1. Inhibition of SRSF1 phosphorylation both by SRPK1 shRNA knockdown and by a selective inhibitor, SPHINX31, resulted in a switch in splicing to ∆Ex3PD1. Cholangiocarcinoma cell-mediated repression of T cell IL-2 expression was reversed by SPHINX31 (equivalent to pembrolizumab). CONCLUSIONS: These results indicate that switching of the splicing decision from flPD1 to ∆Ex3PD1 by targeting SRPK1 could represent a potential novel mechanism of immune checkpoint inhibition in cancer.


Subject(s)
Alternative Splicing , Cholangiocarcinoma , Humans , Phosphorylation , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Protein Serine-Threonine Kinases/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Arginine/genetics , Arginine/metabolism , Serine/chemistry , Serine/genetics , Serine/metabolism , T-Cell Exhaustion , Interleukin-2/genetics , Leukocytes, Mononuclear/metabolism , Programmed Cell Death 1 Receptor/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...