Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 128: 111560, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246003

ABSTRACT

The anti-inflammatory and immunosuppressive drugs which are used in the treatment of Graft-versus-Host Disease (GVHD) have limited effects in controlling the severity of the disease. In this study, we aimed to investigate the prophylactic effect of Alantolactone (ALT) in a murine model of experimental GVHD. The study included 4 BALB/c groups as hosts: Naïve (n = 7), Control GVHD (n = 16), ALT-GVHD (n = 16), and Syngeneic transplantation (n = 10). Busulfan (20 mg/kg/day) for 4 days followed by cyclophosphamide (100 mg/kg/day) were administered for conditioning. Allogeneic transplantation was performed with cells collected from mismatched female C57BL/6, and GVHD development was monitored by histological and flow cytometric assays. Additionally, liver biopsies were taken from GVHD patient volunteers between ages 2-18 (n = 4) and non-GVHD patients between ages 2-50 (n = 5) and cultured ex vivo with ALT, and the supernatants were used for ELISA. ALT significantly ameliorated histopathological scores of the GVHD and improved GVHD clinical scores. CD8+ T cells were shown to be reduced after ALT treatment. More importantly, ALT treatment skewed T cells to a more naïve phenotype (CD62L+ CD44-). ALT did not alter Treg cell number or frequency. ALT treatment appears to suppress myeloid cell lineage (CD11c+). Consistent with reduced myeloid lineage, liver and small intestine levels of GM-CSF were reduced in ALT-treated mice. IL-6 gene expression was significantly reduced in the intestinal tissue. Ex vivo ALT-treated liver biopsy samples from GVHD patients showed a trend of decrease in pro-inflammatory cytokines but there was no statistical significance. Collectively, the data indicated that ALT may have immunomodulatory actions in a preclinical murine GVHD model.


Subject(s)
CD8-Positive T-Lymphocytes , Graft vs Host Disease , Lactones , Sesquiterpenes, Eudesmane , Humans , Mice , Female , Animals , Mice, Inbred C57BL , Graft vs Host Disease/prevention & control , Transplantation, Homologous , Bone Marrow Transplantation
3.
Mol Neurobiol ; 61(2): 1061-1079, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37676393

ABSTRACT

Glioblastoma multiforme (GBM) remains one of the most challenging solid cancers to treat due to its highly aggressive and drug-resistant nature. Flavopiridol is synthetic flavone that was recently approved by the FDA for the treatment of acute myeloid leukemia. Flavopiridol exhibits antiproliferative activity in several solid cancer cells and currently evaluated in clinical trials in several solid and hematological cancers. In this study, we investigated the molecular mechanisms underlying antiproliferative effects of flavopiridol in GBM cell lines with wild-type and mutant encoding isocitrate dehydrogenase 1 (IDH1). We found that flavopiridol inhibits proliferation, colony formation, and migration and induces apoptosis in IDH1 wild-type and IDH-mutant cells through inhibition of FOXM1 oncogenic signaling. Furthermore, flavopiridol treatment also inhibits of NF-KB, mediators unfolded protein response (UPR), including, GRP78, PERK and IRE1α, and DNA repair enzyme PARP, which have been shown to be potential therapeutic targets by downregulating FOXM1 in GBM cells. Our findings suggest for the first time that flavopiridol suppresses proliferation, survival, and migration and induces apoptosis in IDH1 wild-type and IDH1-mutant GBM cells by targeting FOXM1 oncogenic signaling which also regulates NF-KB, PARP, and UPR response in GBM cells. Flavopiridol may be a potential novel therapeutic strategy in the treatment of patients IDH1 wild-type and IDH1-mutant GBM.


Subject(s)
Brain Neoplasms , Flavonoids , Glioblastoma , Piperidines , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Endoribonucleases , Poly(ADP-ribose) Polymerase Inhibitors , Protein Serine-Threonine Kinases/genetics , Cell Proliferation , Apoptosis , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Brain Neoplasms/genetics , Forkhead Box Protein M1/genetics
4.
J Clin Immunol ; 44(1): 1, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38100037

ABSTRACT

Lymphocyte-specific protein tyrosine kinase (LCK) is an SRC-family kinase critical for initiation and propagation of T-cell antigen receptor (TCR) signaling through phosphorylation of TCR-associated CD3 chains and recruited downstream molecules. Until now, only one case of profound T-cell immune deficiency with complete LCK deficiency [1] caused by a biallelic missense mutation (c.1022T>C, p.L341P) and three cases of incomplete LCK deficiency [2] caused by a biallelic splice site mutation (c.188-2A>G) have been described. Additionally, deregulated LCK expression has been associated with genetically undefined immune deficiencies and hematological malignancies. Here, we describe the second case of complete LCK deficiency in a 6-month-old girl born to consanguineous parents presenting with profound T-cell immune deficiency. Whole exome sequencing (WES) revealed a novel pathogenic biallelic missense mutation in LCK (c.1393T>C, p.C465R), which led to the absence of LCK protein expression and phosphorylation, and a consecutive decrease in proximal TCR signaling. Loss of conventional CD4+ and CD8+ αßT-cells and homeostatic T-cell expansion was accompanied by increased γδT-cell and Treg percentages. Surface CD4 and CD8 co-receptor expression was reduced in the patient T-cells, while the heterozygous mother had impaired CD4 and CD8 surface expression to a lesser extent. We conclude that complete LCK deficiency is characterized by profound T-cell immune deficiency, reduced CD4 and CD8 surface expression, and a characteristic TCR signaling disorder. CD4 and CD8 surface expression may be of value for early detection of mono- and/or biallelic LCK deficiency.


Subject(s)
Immunologic Deficiency Syndromes , Female , Humans , Infant , Phosphorylation , Receptors, Antigen, T-Cell/genetics , Signal Transduction
5.
Clin Immunol ; 253: 109691, 2023 08.
Article in English | MEDLINE | ID: mdl-37433423

ABSTRACT

In 15 Turkish LAD-1 patients and controls, we assessed the impact of pathogenic ITGB2 mutations on Th17/Treg differentiation and functions, and innate lymphoid cell (ILC) subsets. The percentage of peripheral blood Treg cells, in vitro-generated induced Tregs differentiated from naive CD4+ T cells were decreased despite the elevated absolute counts of CD4+ cells in LAD-1 patients. Serum IL-23 levels were elevated in LAD-1 patients. Post-curdlan stimulation, LAD-1 patient-derived PBMCs produced more IL-17A. Additionally, the percentages of CD18-deficient Th17 cells expanded from total or naïve CD4+ T cells were higher. The blood ILC3 subset was significantly elevated in LAD-1. Finally, LAD-1 PBMCs showed defects in trans-well migration and proliferation and were more resistant to apoptosis. Defects in de novo generation of Tregs from CD18-deficient naïve T cells and elevated Th17s, and ILC3s in LAD-1 patients' peripheral blood suggest a type 3-skewed immunity and may contribute to LAD-1-associated autoimmune symptoms.


Subject(s)
Leukocyte-Adhesion Deficiency Syndrome , T-Lymphocytes, Regulatory , Humans , Immunity, Innate , CD4-Positive T-Lymphocytes , Th17 Cells
6.
Genes Immun ; 24(1): 12-20, 2023 02.
Article in English | MEDLINE | ID: mdl-36517554

ABSTRACT

Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.


Subject(s)
Immunologic Deficiency Syndromes , Leucovorin , Reduced Folate Carrier Protein , Humans , Folic Acid/genetics , Folic Acid/metabolism , Leucovorin/therapeutic use , Leucovorin/metabolism , Leukocytes, Mononuclear/metabolism , Methotrexate/pharmacology , Methotrexate/therapeutic use , Proton-Coupled Folate Transporter/genetics , Proton-Coupled Folate Transporter/metabolism , Reduced Folate Carrier Protein/genetics , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism
7.
Am J Reprod Immunol ; 88(1): e13555, 2022 07.
Article in English | MEDLINE | ID: mdl-35452164

ABSTRACT

PROBLEM: Although pregnant women with gestational diabetes (GD), morbidly adherent placenta (MAP), and pregnancy hypertension (pHT) diseases lead to intrauterine growth restriction (IUGR), little is known about their effect on mucosal-associated invariant T (MAIT) and innate lymphoid cells (ILC) in the umbilical cord. This study aimed to quantify and characterize MAIT cells and ILCs in the cord blood of pregnant women with GD, MAP, and pHT diseases. METHOD OF STUDY: Cord blood mononuclear cells (CBMCs) were isolated by Ficoll-Paque gradient. CD3+ TCRVα7.2+ CD161high cells and ILC subsets were quantified by flow cytometry. CBMCs were stimulated with PMA/Ionomycin and Golgi Plug for 4 h and stained for IFN-γ, TNF-α, and granzyme B. The stained cells were analyzed on FACS ARIA III. RESULTS: Compared with healthy pregnancies, in the cord blood of the pHT group, elevated number of lymphocytes was observed. Moreover, the absolute number of IFN-γ producing CD4+ or CD4- subsets of CD3+ TCRVα7.2+ CD161high cells as well as those producing granzyme B were significantly elevated in the pHT group compared to healthy controls suggesting increased MAIT cell activity in the pHT cord blood. Similarly, in the MAP group, the absolute number of total CD3+ TCRVα7.2+ CD161high cells, but not individual CD4+ or negative subsets, were significantly increased compared with healthy controls' cord blood. Absolute numbers of total CD3+ TCRVα7.2+ CD161high cells and their subsets were comparable in the cord blood of the GD group compared with healthy controls. Finally, the absolute number of total ILCs and ILC3 subset were significantly elevated in only pHT cord blood compared with healthy controls. Our data also reveal that IFN-γ+ or granzyme B+ cell numbers negatively correlated with fetal birth weight. CONCLUSIONS: CD3+ TCRVα7.2+ CD161high cells and ILCs show unique expansion and activity in the cord blood of pregnant women with distinct diseases causing IUGR and may play roles in fetal growth restriction.


Subject(s)
Diabetes, Gestational , Hypertension, Pregnancy-Induced , Placenta Accreta , T-Lymphocyte Subsets , Diabetes, Gestational/immunology , Female , Fetal Blood/cytology , Fetal Blood/immunology , Granzymes , Humans , Hypertension, Pregnancy-Induced/immunology , Immunity, Innate , Lymphocytes , Placenta/pathology , Placenta Accreta/immunology , Pregnancy , T-Lymphocyte Subsets/cytology
8.
Anticancer Drugs ; 33(1): 11-18, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34348356

ABSTRACT

Mucositis is a common side effect of cancer therapies and transplant conditioning regimens. Management of mucositis involves multiple approaches from oral hygiene, anti-inflammatory, anti-apoptotic, cytoprotective, and antioxidant agents, to cryo-therapy, physical therapy, and growth factors. There is room for novel, affordable treatment options, or improvement of currently available therapies. Vitamin D has been shown to regulate mucosa-resident cell populations such as Th17 or innate lymphoid cells and critical mucosal cytokine IL-22; however, their therapeutic potential has not been put to test in preclinical mouse models. In this study, we aimed to test the therapeutic potential of vitamin D injections and IL-22 overexpression in a murine model of chemotherapy-induced mucositis. Balb/c mice were given daily intraperitoneal injections of vitamin D. Mucositis was induced by methotrexate. Another group received IL-22 plasmid via hydrodynamic gene delivery. Weight loss and intestinal histopathology, intestinal levels of cytokines IL-22, IL-17A, GM-CSF, IL-23, IFN-γ, TNF-α, and IL-10, and number of intestinal lamina propria B cell, neutrophil, and total innate lymphoid cells were quantified. Daily vitamin D injections ameliorated intestinal inflammation and elevated intestinal IL-22 levels compared with control groups. Temporal overexpression of IL-22 by hydrodynamic gene delivery slightly increased intestinal IL-22 but failed to confer significant protection from mucositis. To our knowledge, this is the first experimental demonstration in an animal model of mucositis of therapeutic use of vitamin D and IL-22 supplementation and our results with vitamin D suggest it may have merit in further trials in human mucositis patients.


Subject(s)
Inflammation Mediators/metabolism , Interleukins/pharmacology , Intestinal Mucosa/drug effects , Mucositis/pathology , Vitamin D/pharmacology , Animals , Disease Models, Animal , Drug Therapy, Combination , Gene Transfer Techniques , Interleukins/administration & dosage , Methotrexate/pharmacology , Mice , Mice, Inbred BALB C , Mucositis/chemically induced , Vitamin D/administration & dosage , Weight Loss/drug effects , Interleukin-22
9.
Pediatr Int ; 64(1): e15058, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34779084

ABSTRACT

BACKGROUND: This study aimed to evaluate circulating fibrocyte levels in cystic fibrosis (CF) patients during stable and exacerbation periods of the condition. METHODS: The study group consisted of 39 patients diagnosed with CF and 20 healthy controls. Individuals included in the study were divided into three groups: CF, CF exacerbated, and a healthy control group. Their circulating fibrocyte levels were compared. Findings from a pulmonary function test and high-resolution computed tomography of the lung were evaluated and compared. RESULTS: The circulating fibrocyte count was found to be significantly higher in patients with CF compared with the exacerbated and control groups. No correlation was found between the forced expiratory volume in 1 s and forced vital capacity values in the pulmonary function test and the circulating fibrocyte count. The circulating fibrocyte count in patients (in the CF group) with positive findings in the high-resolution computed tomography was statistically significantly lower. CONCLUSIONS: The circulating fibrocyte level in the peripheral blood of the patients with CF was increased.


Subject(s)
Cystic Fibrosis , Child , Forced Expiratory Volume , Humans , Lung , Respiratory Function Tests/methods , Vital Capacity
10.
Immunology ; 164(1): 73-89, 2021 09.
Article in English | MEDLINE | ID: mdl-33876425

ABSTRACT

IL-22 is an alpha-helical cytokine which belongs to the IL-10 family of cytokines. IL-22 is produced by RORγt+ innate and adaptive lymphocytes, including ILC3, γδ T, iNKT, Th17 and Th22 cells and some granulocytes. IL-22 receptor is expressed primarily by non-haematopoietic cells. IL-22 is critical for barrier immunity at the mucosal surfaces in the steady state and during infection. Although IL-22 knockout mice were previously shown to develop experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), how temporal IL-22 manipulation in adult mice would affect EAE course has not been studied previously. In this study, we overexpressed IL-22 via hydrodynamic gene delivery or blocked it via neutralizing antibodies in C57BL/6 mice to explore the therapeutic impact of IL-22 modulation on the EAE course. IL-22 overexpression significantly decreased EAE scores and demyelination, and reduced infiltration of IFN-γ+IL-17A+Th17 cells into the central nervous system (CNS). The neutralization of IL-22 did not alter the EAE pathology significantly. We show that IL-22-mediated protection is independent of Reg3γ, an epithelial cell-derived antimicrobial peptide induced by IL-22. Thus, overexpression of Reg3γ significantly exacerbated EAE scores, demyelination and infiltration of IFN-γ+IL-17A+ and IL-17A+GM-CSF+Th17 cells to CNS. We also show that Reg3γ may inhibit IL-2-mediated STAT5 signalling and impair expansion of Treg cells in vivo and in vitro. Finally, Reg3γ overexpression dramatically impacted intestinal microbiota during EAE. Our results provide novel insight into the role of IL-22 and IL-22-induced antimicrobial peptide Reg3γ in the pathogenesis of CNS inflammation in a murine model of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukins/metabolism , Multiple Sclerosis/immunology , Pancreatitis-Associated Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Regulation , HEK293 Cells , Humans , Interleukins/genetics , Mice , Mice, Inbred C57BL , Pancreatitis-Associated Proteins/genetics , Receptors, Interleukin/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Interleukin-22
11.
Allergy ; 75(4): 921-932, 2020 04.
Article in English | MEDLINE | ID: mdl-31596517

ABSTRACT

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8) deficiency is the main cause of the autosomal recessive hyper-IgE syndrome (HIES). We previously reported the selective loss of group 3 innate lymphoid cell (ILC) number and function in a Dock8-deficient mouse model. In this study, we sought to test whether DOCK8 is required for the function and maintenance of ILC subsets in humans. METHODS: Peripheral blood ILC1-3 subsets of 16 DOCK8-deficient patients recruited at the pretransplant stage, and seven patients with autosomal dominant (AD) HIES due to STAT3 mutations, were compared with those of healthy controls or post-transplant DOCK8-deficient patients (n = 12) by flow cytometry and real-time qPCR. Sorted total ILCs from DOCK8- or STAT3-mutant patients and healthy controls were assayed for survival, apoptosis, proliferation, and activation by IL-7, IL-23, and IL-12 by cell culture, flow cytometry, and phospho-flow assays. RESULTS: DOCK8-deficient but not STAT3-mutant patients exhibited a profound depletion of ILC3s, and to a lesser extent ILC2s, in their peripheral blood. DOCK8-deficient ILC1-3 subsets had defective proliferation, expressed lower levels of IL-7R, responded less to IL-7, IL-12, or IL-23 cytokines, and were more prone to apoptosis compared with those of healthy controls. CONCLUSION: DOCK8 regulates human ILC3 expansion and survival, and more globally ILC cytokine signaling and proliferation. DOCK8 deficiency leads to loss of ILC3 from peripheral blood. ILC3 deficiency may contribute to the susceptibility of DOCK8-deficient patients to infections.


Subject(s)
Immunity, Innate , Job Syndrome , Cytokines , Guanine Nucleotide Exchange Factors , Humans , Job Syndrome/genetics , Lymphocytes , Mutation
12.
J Clin Immunol ; 39(4): 391-400, 2019 05.
Article in English | MEDLINE | ID: mdl-31025232

ABSTRACT

PURPOSE: Interleukin-2-inducible T cell kinase (ITK) is an important mediator of T cell receptor signaling. Loss of function mutations in ITK results in hypogammaglobulinemia and CD4+ T cell loss in humans, and the patients often present with EBV-associated B cell lymphoproliferative syndrome. Itk-deficient mice show loss of T cell naivety, impaired cytolytic activity of CD8+ T cells, and defects in CD4+ T cell lineage choice decisions. In mice, Itk mutations were shown to affect Th17-Treg lineage choice in favor of the latter. In this study, we explored whether human ITK reciprocally regulates Th17-Treg balance as its murine ortholog. METHODS: Whole Exome Sequencing was used to identify the mutation. ITK-deficient peripheral blood lymphocytes were characterized by FACSAria III-based flow cytometric assays with respect to proliferation, apoptosis, cytokine production, and innate lymphoid cell (ILC) frequency. Sorted T cells from healthy donors were exposed to ibrutinib, an irreversible ITK inhibitor, to assess ITK's contribution to Th17 and Treg cell generation and functions. RESULTS: In this study, we report a child with a novel ITK mutation who showed impaired CD3/CD28 induced proliferation in T cells. ITK-mutant cells were more apoptotic irrespective of TCR activation. More importantly, T cells produced less Th17-associated cytokines IL-17A, IL-22, and GM-CSF. Conversely, Th1-associated IFN-γ production was increased. An irreversible inhibitor of ITK, ibrutinib, blocked ex vivo Th17 generation and IL-17A production, conversely augmented FOXP3 expression only at low doses in Treg cultures. Finally, we analyzed peripheral ILC populations and observed a relative decrease in ILC2 and ILC3 frequency in our ITK-deficient patient. CONCLUSIONS: To our knowledge, this is the first report showing that both genetic and chemical inhibition of ITK result in reduced Th17 generation and function in humans. We also report, for the first time, a reduction in ILC2 and ILC3 populations in an ITK-deficient human patient.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Immunity, Innate , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/deficiency , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Animals , Apoptosis , Biomarkers , Cell Proliferation , Child, Preschool , Consanguinity , Cytokines/metabolism , DNA Mutational Analysis , Female , Flow Cytometry , Forkhead Transcription Factors/metabolism , High-Throughput Nucleotide Sequencing , Humans , Mice , Pedigree , Protein-Tyrosine Kinases/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
13.
Front Immunol ; 10: 217, 2019.
Article in English | MEDLINE | ID: mdl-30828332

ABSTRACT

Sphingosine-1 phosphate receptor 1 (S1PR1) is expressed by lymphocytes and regulates their egress from secondary lymphoid organs. Innate lymphoid cell (ILC) family has been expanded with the discovery of group 1, 2 and 3 ILCs, namely ILC1, ILC2 and ILC3. ILC3 and ILC1 have remarkable similarity to CD4+ helper T cell lineage members Th17 and Th1, respectively, which are important in the pathology of multiple sclerosis (MS). Whether human ILC subsets express S1PR1 or respond to its ligands have not been studied. In this study, we used peripheral blood/cord blood and tonsil lymphocytes as a source of human ILCs. We show that human ILCs express S1PR1 mRNA and protein and migrate toward S1P receptor ligands. Comparison of peripheral blood ILC numbers between fingolimod-receiving and treatment-free MS patients revealed that, in vivo, ILCs respond to fingolimod, an S1PR1 agonist, resulting in ILC-penia in circulation. Similarly, murine ILCs responded to fingolimod by exiting blood and accumulating in the secondary lymph nodes. Importantly, ex vivo exposure of ILC3 and ILC1 to fingolimod or SEW2871, another S1PR1 antagonist, reduced production of ILC3- and ILC1- associated cytokines GM-CSF, IL-22, IL-17, and IFN-γ, respectively. Surprisingly, despite reduced number of lamina propria-resident ILC3s in the long-term fingolimod-treated mice, ILC3-associated IL-22, IL-17A, GM-CSF and antimicrobial peptides were high in the gut compared to controls, suggesting that its long term use may not compromise mucosal barrier function. To our knowledge, this is the first study to investigate the impact of fingolimod on human ILC subsets in vivo and ex vivo, and provides insight into the impact of long term fingolimod use on ILC populations.


Subject(s)
Fingolimod Hydrochloride/metabolism , Lymphocytes/drug effects , Multiple Sclerosis/immunology , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Humans , Immunity, Innate , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sphingosine-1-Phosphate Receptors/agonists , Th1 Cells/immunology , Th17 Cells/immunology , Tissue Distribution
14.
North Clin Istanb ; 6(4): 379-387, 2019.
Article in English | MEDLINE | ID: mdl-31909384

ABSTRACT

OBJECTIVE: In this study, we aimed to assess the effects of long- and short-term IL-15 cytokine exposure of human monocyte-derived curdlan-matured dendritic cells (DCs) on the production of Th17 cell-polarizing cytokine IL-23 and subsequent Th17 cell activation. METHODS: Peripheral blood mononuclear cells (PBMCs) were purified using Ficoll-Paque from healthy donors. Monocytes were magnetically selected using CD14 Miltenyi beads and differentiated into DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 for five days in the presence or absence of IL-15 (100ng/ml) for long-term exposure experiments. Then, DCs were matured with peptidoglycan (PGN), or curdlan for 24 hours. For short-term exposure experiments, IL-15 was added only during maturation of DCs. Then, DCs were characterized concerning the expression of MHC II and costimulatory molecules, production of cytokine subunits IL-23p19, IL-12p40, IL-12p35 and cytokine IL-23 via flow cytometry or real-time qPCR or ELISA. Finally, the phosphorylation of signaling molecules after curdlan stimulation was assessed using phospho-flow assays. RESULTS: IL-15 exposure suppressed IL-23 production by DCs. As a result, IL-15-exposed DCs suppressed IL-17 production by allogeneic T cells. Importantly, we observed a reduction in the surface Dectin-1 receptor levels by IL-15-exposed DCs. In line with these observations, curdlan stimulation resulted in reduced phosphorylation of ERK1/2, NF-kB p65 and AKT by human DCs exposed to IL-15 compared with controls. These results may explain why IL-15-exposed DCs produce less IL-23 after maturation with curdlan, which is a ligand of Dectin-1. CONCLUSION: Short- or long-term exposure to IL-15 of human DCs during their differentiation or maturation programs DCs against Th17 cell polarization, which suggests that IL-15 availability may affect CD4+ T cell-mediated protective immunity to fungal infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...