Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Recept Signal Transduct Res ; 42(6): 573-579, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35901021

ABSTRACT

Loss-of-function mutations of the arginine vasopressin receptor 2 gene (AVPR2) cause Nephrogenic diabetes insipidus (NDI). AVPR2 is a kind of G protein coupled receptor (GPCR) and mainly couples with Gαs protein leading to cAMP accumulation in the cell as a secondary messenger. Recent studies showed that some AVPR2 mutations could cause biased Gαq/11 protein coupling rather than Gαs. Investigation into the characterization of biased receptors may give insights into the relationship between the conformational change of the receptor because of the mutation and related downstream signaling. In this study, R68W and V162A were analyzed to whether they show a bias to Gαs or Gαq/11 proteins. Their functionality in terms of cAMP production via Gαs protein coupling was decreased compared to the wild-type receptor. On the other hand, they showed the ability to couple with Gαq/11 protein and make Ca2+ mobilization at different levels in the cell. R68W showed bias to coupling with Gαq/11 protein rather than V162A and wild-type receptor. Studies about the Gα protein coupling bias of mutant AVPR2s may broaden our understanding of the relationship between the changed conformation of the receptor and consequently activated signaling pathways, and also may shed light on the development of more effective new therapeutics.


Subject(s)
Diabetes Insipidus, Nephrogenic , Diabetes Mellitus , Receptors, Vasopressin , Humans , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Mutation , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism
2.
ACS Omega ; 7(23): 20195-20203, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721900

ABSTRACT

Early diagnosis and effective treatment of cancer are significant issues that should be focused on since it is one of the most deadly diseases. Multifunctional nanomaterials can offer new cancer diagnoses and treatment possibilities. These nanomaterials with diverse functions, including targeting, imaging, and therapy, are being studied extensively in a way that minimize overcoming the limitations associated with traditional cancer diagnosis and treatment. Therefore, the goal of this study is to prepare multifunctional nanocomposites possessing the potential to be used simultaneously in imaging such as magnetic resonance imaging (MRI) and dual cancer therapy such as photothermal therapy (PTT) and boron neutron capture therapy (BNCT). In this context, multi-core MnFe2O4 nanoparticles, which can be used as a potential MRI contrast agent and target the desired region in the body via a magnetic field, were successfully synthesized via the solvothermal method. Then, multi-core nanoparticles were coated with polydopamine (PDA) to reduce gold nanoparticles, bind boron on the surface, and ensure the biocompatibility of all materials. Finally, gold nanoparticles were reduced on the surface of PDA-coated MnFe2O4, and boric acid was attached to the hybrid materials for also possessing the ability to be used as a potential agent in PTT and BNCT applications in addition to being an MRI agent. According to the cell viability assay, treatment of the glioblastoma cell line (T98G) with MnFe2O4@PDA-Au-BA for 24 and 48 h did not cause any significant cell death, indicating good biocompatibility. All analysis results showed that the developed MnFe2O4@PDA-Au-BA multifunctional material could be a helpful candidate for biomedical applications such as MRI, PTT, and BNCT.

3.
Eur J Pharmacol ; 865: 172803, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31738937

ABSTRACT

Nephrogenic Diabetes Insipidus is a rare disorder which is characterized by severe water imbalance in the body. The disease can be acquired or inherited. AVPR2 (arginine vasopressin type 2 receptor) mutations are responsible for genetical type of the disorder. Mutations in the AVPR2 gene may cause loss-of-function due to conformational defects. According to the mutation type, the three-dimensional structure of AVPR2 may be affected even if it is functional and therefore it may not reach the plasma membrane where it is functional. Consequently, it is generally trapped in the Endoplasmic reticulum or Golgi apparatus, which are the quality control systems of the cell. Pharmacological chaperones have been used to retrieve these mutant AVPR2s from these quality control systems of the cell and take them to the plasma membrane for therapeutic purposes. In this study, in order to analyze the effects of two pharmacological chaperones, SR121463B and SR49059, we performed total ELISA and surface ELISA studies and cAMP accumulation assays on mutant receptors (G12E, R68W, V88M, ΔR67_G69/G107W, R106C, V162A and T273M). We observed that pharmacological chaperones may act differently on mutated AVPR2s. Cell surface expression of the mutant receptors and cAMP accumulation response, after stimulation with AVP, were mostly improved by these pharmacological chaperones. We believe that, this study presents important results with respect to the process of the variable type of mutated proteins in the cell and may help in developing a process of new types of chaperones.


Subject(s)
Antidiuretic Hormone Receptor Antagonists/pharmacology , Cyclic AMP/metabolism , Hormone Antagonists/pharmacology , Indoles/pharmacology , Morpholines/pharmacology , Pyrrolidines/pharmacology , Receptors, Vasopressin/genetics , Spiro Compounds/pharmacology , Animals , COS Cells , Chlorocebus aethiops , Mutation , Receptors, Vasopressin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...