Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
J Immunother Cancer ; 7(1): 284, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690351

ABSTRACT

BACKGROUND: Affinity-optimized T cell receptor (TCR)-engineered lymphocytes targeting tumor antigens can mediate potent antitumor responses in cancer patients, but also bear substantial risks for off-target toxicities. Most preclinical studies have focused on T cell responses to antigen-specific stimulation. In contrast, little is known on the regulation of T cell responsiveness through continuous TCR triggering and consequent tonic signaling. Here, we addressed the question whether increasing the TCR affinity can lead to chronic interactions occurring directly between TCRs and MHC-(self) molecules, which may modulate the overall functional potency of tumor-redirected CD8 T cells. For this purpose, we developed two complementary human CD8 T cell models (i.e. HLA-A2 knock-in and knock-out) engineered with incremental-affinity TCRs to the HLA-A2/NY-ESO-1 tumor antigen. METHODS: The impact of HLA-A2 recognition, depending on TCR affinity, was assessed at the levels of the TCR/CD3 complex, regulatory receptors, and signaling, under steady-state conditions and in kinetic studies. The quality of CD8 T cell responses was further evaluated by gene expression and multiplex cytokine profiling, as well as real-time quantitative cell killing, combined with co-culture assays. RESULTS: We found that HLA-A2 per se (in absence of cognate peptide) can trigger chronic activation followed by a tolerance-like state of tumor-redirected CD8 T cells with increased-affinity TCRs. HLA-A2pos but not HLA-A2neg T cells displayed an activation phenotype, associated with enhanced upregulation of c-CBL and multiple inhibitory receptors. T cell activation preceded TCR/CD3 downmodulation, impaired TCR signaling and functional hyporesponsiveness. This stepwise activation-to-hyporesponsive state was dependent on TCR affinity and already detectable at the upper end of the physiological affinity range (KD ≤ 1 µM). Similar findings were made when affinity-increased HLA-A2neg CD8 T cells were chronically exposed to HLA-A2pos-expressing target cells. CONCLUSIONS: Our observations indicate that sustained interactions between affinity-increased TCR and self-MHC can directly adjust the functional potential of T cells, even in the absence of antigen-specific stimulation. The observed tolerance-like state depends on TCR affinity and has therefore potential implications for the design of affinity-improved TCRs for adoptive T cell therapy, as several engineered TCRs currently used in clinical trials share similar affinity properties.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm/immunology , CD3 Complex/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic , Gene Expression , HLA-A2 Antigen/genetics , Humans , Immunophenotyping , Immunotherapy, Adoptive , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/therapy , Protein Binding , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Signal Transduction
2.
Front Immunol ; 8: 1564, 2017.
Article in English | MEDLINE | ID: mdl-29187853

ABSTRACT

Redirecting CD8 T cell immunity with self/tumor-specific affinity-matured T cell receptors (TCRs) is a promising approach for clinical adoptive T cell therapy, with the aim to improve treatment efficacy. Despite numerous functional-based studies, little is known about the characteristics of TCR signaling (i.e., intensity, duration, and amplification) and the regulatory mechanisms underlying optimal therapeutic T cell responses. Using a panel of human SUP-T1 and primary CD8 T cells engineered with incremental affinity TCRs against the cancer-testis antigen NY-ESO-1, we found that upon activation, T cells with optimal-affinity TCRs generated intense and sustained proximal (CD3ζ, LCK) signals associated with distal (ERK1/2) amplification-gain and increased function. In contrast, in T cells with very high affinity TCRs, signal initiation was rapid and strong yet only transient, resulting in poor MAPK activation and low proliferation potential even at high antigen stimulation dose. Under resting conditions, the levels of surface TCR/CD3ε, CD8ß, and CD28 expression and of CD3ζ phosphorylation were significantly reduced in those hyporesponsive cells, suggesting the presence of TCR affinity-related activation thresholds. We also show that SHP phosphatases were involved along the TCR affinity gradient, but displayed spatially distinct regulatory roles. While PTPN6/SHP-1 phosphatase activity controlled TCR signaling initiation and subsequent amplification by counteracting CD3ζ and ERK1/2 phosphorylation, PTPN11/SHP-2 augmented MAPK activation without affecting proximal TCR signaling. Together, our findings indicate that optimal TCR signaling can be finely tuned by TCR affinity-dependent SHP-1 and SHP-2 activity, and this may readily be determined at the TCR/CD3 complex level. We propose that these TCR affinity-associated regulations represent potential protective mechanisms preventing high affinity TCR-mediated autoimmune diseases.

3.
Article in English | MEDLINE | ID: mdl-25414725

ABSTRACT

BACKGROUND: Scorpion venoms are rich bioactive peptide libraries that offer promising molecules that may lead to the discovery and development of new drugs. Leiurus abdullahbayrami produces one of the most potent venoms among Turkish scorpions that provokes severe symptoms in envenomated victims. METHODS: In the present study, the peptide profile of the venom was investigated by electrophoretic methods, size-exclusion and reversed-phase chromatography and mass spectroscopy. Cytotoxic and antimicrobial effects were evaluated on a breast cancer cell line (MCF-7) and various bacterial and fungal species. RESULTS: Proteins make up approximately half of the dry weight of L. abdullahbayrami crude venom. Microfluidic capillary electrophoresis indicated the presence of 6 to 7 kDa peptides and proved to be a highly practical peptidomics tool with better resolution when compared to conventional polyacrylamide gel electrophoresis. Mass spectroscopy analysis helped us to identify 45 unique peptide masses between 1 to 7 kDa with a bimodal mass distribution peaking between molecular weights of 1 to 2 kDa (29%) and 3 to 4 kDa (31%). L. abdullahbayrami crude venom had a proliferative effect on MCF-7 cells, which may be explained by the high concentration of polyamines as well as potassium and calcium ions in the arachnid venoms. Antimicrobial effect was stronger on gram-negative bacteria. CONCLUSIONS: This work represents the first peptidomic characterization of L. abdullahbayrami venom. Considering the molecular weight-function relationship of previously identified venom peptides, future bioactivity studies may lead to the discovery of novel potassium and chloride ion channel inhibitors as well as new antimicrobial peptides from L. abdullahbayrami venom.

4.
J. venom. anim. toxins incl. trop. dis ; 20: 48, 04/02/2014. tab, ilus, mapas, graf
Article in English | LILACS, VETINDEX | ID: biblio-954728

ABSTRACT

Background Scorpion venoms are rich bioactive peptide libraries that offer promising molecules that may lead to the discovery and development of new drugs.Leiurus abdullahbayrami produces one of the most potent venoms among Turkish scorpions that provokes severe symptoms in envenomated victims.Methods In the present study, the peptide profile of the venom was investigated by electrophoretic methods, size-exclusion and reversed-phase chromatography and mass spectroscopy. Cytotoxic and antimicrobial effects were evaluated on a breast cancer cell line (MCF-7) and various bacterial and fungal species.Results Proteins make up approximately half of the dry weight of L. abdullahbayrami crude venom. Microfluidic capillary electrophoresis indicated the presence of 6 to 7 kDa peptides and proved to be a highly practical peptidomics tool with better resolution when compared to conventional polyacrylamide gel electrophoresis. Mass spectroscopy analysis helped us to identify 45 unique peptide masses between 1 to 7 kDa with a bimodal mass distribution peaking between molecular weights of 1 to 2 kDa (29%) and 3 to 4 kDa (31%). L. abdullahbayrami crude venom had a proliferative effect on MCF-7 cells, which may be explained by the high concentration of polyamines as well as potassium and calcium ions in the arachnid venoms. Antimicrobial effect was stronger on gram-negative bacteria.Conclusions This work represents the first peptidomic characterization of L. abdullahbayrami venom. Considering the molecular weight-function relationship of previously identified venom peptides, future bioactivity studies may lead to the discovery of novel potassium and chloride ion channel inhibitors as well as new antimicrobial peptides fromL. abdullahbayrami venom.(AU)


Subject(s)
Animals , Peptides , Scorpion Venoms , Scorpions , Electrophoresis, Capillary , Peptide Library
SELECTION OF CITATIONS
SEARCH DETAIL
...