Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(17): eadj8275, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657069

ABSTRACT

Brand names can be used to hold plastic companies accountable for their items found polluting the environment. We used data from a 5-year (2018-2022) worldwide (84 countries) program to identify brands found on plastic items in the environment through 1576 audit events. We found that 50% of items were unbranded, calling for mandated producer reporting. The top five brands globally were The Coca-Cola Company (11%), PepsiCo (5%), Nestlé (3%), Danone (3%), and Altria (2%), accounting for 24% of the total branded count, and 56 companies accounted for more than 50%. There was a clear and strong log-log linear relationship production (%) = pollution (%) between companies' annual production of plastic and their branded plastic pollution, with food and beverage companies being disproportionately large polluters. Phasing out single-use and short-lived plastic products by the largest polluters would greatly reduce global plastic pollution.


Subject(s)
Environmental Pollution , Plastics , Humans
2.
Mar Pollut Bull ; 193: 115198, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392595

ABSTRACT

The rapid growth in science, media, policymaking, and corporate action aimed at "solving" plastic pollution has revealed an overwhelming complexity, which can lead to paralysis, inaction, or a reliance on downstream mitigations. Plastic use is diverse - varied polymers, product and packaging design, pathways to the environment, and impacts - therefore there is no silver bullet solution. Policies addressing plastic pollution as a single phenomenon respond to this complexity with greater reliance on downstream mitigations, like recycling and cleanup. Here, we present a framework of dividing plastic use in society into sectors, which can be used to disentangle the complexity of plastic pollution and direct attention to upstream design for the circular economy. Monitoring plastic pollution in environmental compartments will continue to provide feedback on mitigations, but with a sector framework, scientists, industry, and policymakers can begin to shape actions to curb the harmful impacts of plastic pollution at the source.


Subject(s)
Environmental Pollution , Plastics , Polymers , Product Packaging , Industry , Recycling
3.
PLoS One ; 18(3): e0281596, 2023.
Article in English | MEDLINE | ID: mdl-36888681

ABSTRACT

As global awareness, science, and policy interventions for plastic escalate, institutions around the world are seeking preventative strategies. Central to this is the need for precise global time series of plastic pollution with which we can assess whether implemented policies are effective, but at present we lack these data. To address this need, we used previously published and new data on floating ocean plastics (n = 11,777 stations) to create a global time-series that estimates the average counts and mass of small plastics in the ocean surface layer from 1979 to 2019. Today's global abundance is estimated at approximately 82-358 trillion plastic particles weighing 1.1-4.9 million tonnes. We observed no clear detectable trend until 1990, a fluctuating but stagnant trend from then until 2005, and a rapid increase until the present. This observed acceleration of plastic densities in the world's oceans, also reported for beaches around the globe, demands urgent international policy interventions.


Subject(s)
Smog , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Plastics , Environmental Monitoring , Oceans and Seas , Waste Products/analysis
4.
Environ Toxicol Chem ; 41(4): 822-837, 2022 04.
Article in English | MEDLINE | ID: mdl-34289522

ABSTRACT

Anthropogenic microfibers, a ubiquitous environmental contaminant, can be categorized as synthetic, semisynthetic, or natural according to material of origin and production process. Although natural fibers, such as cotton and wool, originated from natural sources, they often contain chemical additives, including colorants (e.g., dyes, pigments) and finishes (e.g., flame retardants, antimicrobial agents, ultraviolet light stabilizers). These additives are applied to textiles during production to give textiles desired properties like enhanced durability. Anthropogenically modified "natural" and semisynthetic fibers are sufficiently persistent to undergo long-range transport and accumulate in the environment, where they are ingested by biota. Although most research and communication on microfibers have focused on the sources, pathways, and effects of synthetic fibers in the environment, natural and semisynthetic fibers warrant further investigation because of their abundance. Because of the challenges in enumerating and identifying natural and semisynthetic fibers in environmental samples and the focus on microplastic or synthetic fibers, reports of anthropogenic microfibers in the environment may be underestimated. In this critical review, we 1) report that natural and semisynthetic microfibers are abundant, 2) highlight that some environmental compartments are relatively understudied in the microfiber literature, and 3) report which methods are suitable to enumerate and characterize the full suite of anthropogenic microfibers. We then use these findings to 4) recommend best practices to assess the abundance of anthropogenic microfibers in the environment, including natural and semisynthetic fibers. By focusing exclusively on synthetic fibers in the environment, we are neglecting a major component of anthropogenic microfiber pollution. Environ Toxicol Chem 2022;41:822-837. © 2021 SETAC.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Microplastics , Textiles , Wastewater/chemistry , Water Pollutants, Chemical/analysis
5.
Mar Pollut Bull ; 139: 40-45, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30686443

ABSTRACT

Microfibers are a common type of microplastic. One known source of microfibers to the environment is domestic laundering, which can release thousands of fibers into washing machine effluent with every wash. Here, we adapted existing methods to measure the length, count and weight of microfibers in laundry effluent. We used this method to test the efficacy of two technologies marketed to reduce microfiber emissions: the Cora Ball and Lint LUV-R filter. Both technologies significantly reduced the numbers of microfibers from fleece blankets in washing effluent. The Lint LUV-R captured an average of 87% of microfibers in the wash by count, compared to the Cora Ball which captured 26% by count. The Lint LUV-R also significantly reduced the total weight and average length of fibers in effluent. While further research is needed to understand other sources of microfiber emissions, these available technologies could be adopted to reduce emissions from laundering textiles.


Subject(s)
Laundering/methods , Plastics/analysis , Textiles/analysis , Wastewater/chemistry , Water Pollution/prevention & control , Filtration , Laundering/standards , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...