Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 136: 104765, 2021 09.
Article in English | MEDLINE | ID: mdl-34416571

ABSTRACT

The COVID-19 epidemic, in which millions of people suffer, has affected the whole world in a short time. This virus, which has a high rate of transmission, directly affects the respiratory system of people. While symptoms such as difficulty in breathing, cough, and fever are common, hospitalization and fatal consequences can be seen in progressive situations. For this reason, the most important issue in combating the epidemic is to detect COVID-19(+) early and isolate those with COVID-19(+) from other people. In addition to the RT-PCR test, those with COVID-19(+) can be detected with imaging methods. In this study, it was aimed to detect COVID-19(+) patients with cough acoustic data, which is one of the important symptoms. Based on these data, features were obtained from traditional feature extraction methods using empirical mode decomposition (EMD) and discrete wavelet transform (DWT). Deep features were also obtained using pre-trained ResNet50 and pre-trained MobileNet models. Feature selection was applied to all obtained features with the ReliefF algorithm. In this case, the highest 98.4% accuracy and 98.6% F1-score values were obtained by selecting the EMD + DWT features using ReliefF. In another study in which deep features were used, features obtained from ResNet50 and MobileNet using scalogram images were used. For the features selected using the ReliefF algorithm, the highest performance was found with support vector machines-cubic as 97.8% accuracy and 98.0% F1-score. It has been determined that the features obtained by traditional feature approaches show higher performance than deep features. Among the chaotic measurements, the approximate entropy measurement was determined to be the highest distinguishing feature. According to the results, a highly successful study is presented with cough acoustic data that can easily be obtained from mobile and computer-based applications. We anticipate that this study will be useful as a decision support system in this epidemic period, when it is important to correctly identify even one person.


Subject(s)
COVID-19 , Acoustics , Cough/diagnosis , Humans , SARS-CoV-2 , Wavelet Analysis
2.
Turk J Chem ; 44(5): 1244-1253, 2020.
Article in English | MEDLINE | ID: mdl-33488225

ABSTRACT

Turkey is the leading country in the world in terms of boron production and sale. Increasing boron production goes along with an increasing generation of boron wastes. The pollution of the soil and the air around the waste piles, as well as the occupation of several square kilometers of ground, are major environmental problems. It is, therefore, very important to make use of the wastes to both protect the environment and create revenue. This work presenteda road map for fast screening of boron waste for critical elements followed by determination of the elements using small footprint low power instrumentation. The sample preparation was kept to a minimum. A procedure that allowed an assessment of critical materials in industrial production waste with minimal consumption of hazardous acids, energy, and time was presented. The samples were first screened for valuable and hazardous elements by micro-X-ray fluorescence (XRF). Samples with considerable contents of Cs, Rb, and Aswere then prepared as slurries for the total reflection XRF (TXRF) measurement. To evaluate the TXRF procedure, a standard reference material was analyzed. As a result, Rb and Cs in concentrations up to 420 ± 70 and 1500 ± 200 mg/kg were detected in some of the waste forms. The time savings were in order of a factor of 3 when comparing the prescreening combined micro-XRF and TXRF approach to an all TXRFanalysis approach.

3.
Int J Phytoremediation ; 19(4): 327-339, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-27594142

ABSTRACT

The aim of the present study was to enhance the biosorption capacity of a waste biomass of Punica granatum L. peels (PGL) using various chemical modification agents. Among these agents, hexamethylenediamine (HMDA) indicated the best performance with regard to the improvement of lead(II) ions removal from aqueous solution. The characterization of HMDA-modified P. granatum L. peels (HMDA-PGL) was achieved by using elemental analysis, FT-IR, thermogravimetric (TG) analysis and zeta potential measurement techniques. Based on FT-IR study, the chemical modification of P. granatum L. peels take place with its carboxyl, carbonyl, hydroxyl, etc. groups and these groups are responsible for the biosorption of lead(II) ions onto modified biomass. Biosorption equilibrium and kinetic data fitted well the Langmuir isotherm and the pseudo-second-order kinetic models, respectively. The highest biosorption capacity obtained from Langmuir isotherm model was 371.36 mg g-1. Biosorption process was spontaneous and endothermic in nature according to the thermodynamic results and it quickly reached the equilibrium within 60 minutes. The validity of kinetic models used in this study can be quantitatively tested by using a normalized standard deviation Δq(%).


Subject(s)
Diamines/chemistry , Lead/chemistry , Lythraceae , Seeds , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry , Adsorption , Biodegradation, Environmental , Calcium Chloride/chemistry , Ethylenediamines/chemistry , Food-Processing Industry , Industrial Waste/analysis , Kinetics , Sodium Hydroxide/chemistry
4.
Colloids Surf B Biointerfaces ; 100: 197-204, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22766298

ABSTRACT

In this study, a waste biomass of Punica granatum L. (P. granatum L.) peels was firstly characterized by means of Brunauer-Emmett-Teller (BET) surface area, elemental analysis, FT-IR, thermogravimetric (TG) analysis and zeta potential measurement techniques. FT-IR results indicated that the mechanism involved in the biosorption of lead(II) ions and AB40 onto biosorbent was mainly attributed to lead(II) ions and dye binding of amino, carboxylic, hydroxyl and carbonyl groups. The biosorption abilities of P. granatum L. peels for lead(II) ions and Acid Blue 40 (AB40) were then investigated. Biosorption equilibrium and kinetic data fit well by the Langmuir isotherm and the pseudo-second-order kinetic models, respectively. The maximum biosorption capacities were 193.9 mg g(-1) for lead(II) ions and 138.1 mg g(-1) for AB40. Biosorption processes were spontaneous and endothermic in nature according to the thermodynamic results and the equilibrium was attained within 50 min. The validity of used kinetic models in this study can be quantitatively checked by using a normalized standard deviation Δq(%). Finally, the biosorption procedure was adopted to treat the real and simulated wastewaters including several metal salts and dyes. The wastewater applications have shown that the biosorbent indicated a reasonable biosorption capability to remove lead(II) ions (98.07%) and AB40 (94.76%) from industrial wastewaters.


Subject(s)
Anthraquinones/isolation & purification , Lead/isolation & purification , Lythraceae/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Biomass , Cations, Divalent , Coloring Agents/isolation & purification , Humans , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Thermogravimetry , Waste Products , Water Purification/methods
5.
Environ Monit Assess ; 157(1-4): 355-62, 2009 Oct.
Article in English | MEDLINE | ID: mdl-18843546

ABSTRACT

The metal accumulation levels for muscle, skin, gill, liver and intestine tissues of some Cyprinidae species (Carassius carassius, Condrostoma nasus, Leuciscus cephalus and Alburnus alburnus) in Enne Dame Lake (Kütahya/Turkey), which is mostly fed by hot spring waters, were investigated. Analyses were performed for copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), cobalt (Co), magnesium (Mg), nickel (Ni), chrome (Cr) and boron (B) using inductively coupled plasma-optic emission spectroscopy (ICP-OES), and cadmium (Cd) using atomic absorption spectrophotometer (AAS) utilizing microwave digestion techniques. The concentrations of the heavy metals found in the fish varied in the follow ing ranges: Cu: < DL-7.04, Zn: 6.96-357.25, Mn: < DL-20.70, Ni: < DL-6.21, Fe: 9.62-2500.33, Cr: < DL-1.74, Co: < DL-0.54, Cd: 0.01-0.27 and Mg: 197.44-904.90 mg/kg wet weight. While B had the second highest concentration in the water of the lake, it was not encountered in any tissue of the investigated species. In all tissues and the species, While the bioaccumulation factors (BAFs) of Mn, Zn, Fe and Cu were remarkably high, the BAFs of Mg, Cr, Co, and B were also fairly low or none. Although the heavy metal accumulation levels for the muscle were generally lower than other tissues, there were some exceptions. Cd level in the muscle of C. carassius was higher than the permissible limit stated by Turkish legislation, FAO and WHO. The mean metal amounts for all the investigated tissues and species are statistically compared and discussed in this study.


Subject(s)
Cyprinidae/metabolism , Fresh Water/chemistry , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Animals , Carps/metabolism , Environmental Monitoring , Food Contamination , Gills/metabolism , Intestinal Mucosa/metabolism , Kinetics , Liver/metabolism , Metals, Heavy/analysis , Muscles/metabolism , Skin/metabolism , Turkey , Water Pollutants, Chemical/analysis
6.
J Hazard Mater ; 140(1-2): 173-9, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-16920256

ABSTRACT

The utilization of modified bentonite with a cationic surfactant (dodecyltrimethylammonium (DTMA) bromide) as an adsorbent was successfully carried out to remove a synthetic textile dye (Reactive Blue 19 (RB19)) by adsorption, from aqueous solutions. Batch studies were carried out to address various experimental parameters such as pH, contact time and temperature. The surface modification of bentonite with a surfactant was examined using the FTIR spectroscopic technique and elemental analysis. Effective pH for the adsorption of RB19 onto DTMA-bentonite was around 1.5. The Langmuir isotherm model was found to be the best to represent the equilibrium with experimental data. The maximum adsorption capacity (q(max)) has been found to be 3.30x10(-4)molg(-1) or 206.58mgg(-1). The thermodynamic study indicated that the adsorption of RB19 onto DTMA-bentonite was favored with the negative Gibbs free energy values. The pseudo-second-order rate equation was able to provide the best description of adsorption kinetics and the intraparticle diffusion model was also applicable up to 40min for the adsorption of RB19 onto DTMA-bentonite.


Subject(s)
Bentonite/chemistry , Coloring Agents/chemistry , Surface-Active Agents/chemistry , Textile Industry , Adsorption , Anthraquinones/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...