Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1081931, 2023.
Article in English | MEDLINE | ID: mdl-37342135

ABSTRACT

Sorghum is an important but arguably undervalued cereal crop, grown in large areas in Asia and Africa due to its natural resilience to drought and heat. There is growing demand for sweet sorghum as a source of bioethanol as well as food and feed. The improvement of bioenergy-related traits directly affects bioethanol production from sweet sorghum; therefore, understanding the genetic basis of these traits would enable new cultivars to be developed for bioenergy production. In order to reveal the genetic architecture behind bioenergy-related traits, we generated an F2 population from a cross between sweet sorghum cv. 'Erdurmus' and grain sorghum cv. 'Ogretmenoglu'. This was used to construct a genetic map from SNPs discovered by double-digest restriction-site associated DNA sequencing (ddRAD-seq). F3 lines derived from each F2 individual were phenotyped for bioenergy-related traits in two different locations and their genotypes were analyzed with the SNPs to identify QTL regions. On chromosomes 1, 7, and 9, three major plant height (PH) QTLs (qPH1.1, qPH7.1, and qPH9.1) were identified, with phenotypic variation explained (PVE) ranging from 10.8 to 34.8%. One major QTL (qPJ6.1) on chromosome 6 was associated with the plant juice trait (PJ) and explained 35.2% of its phenotypic variation. For fresh biomass weight (FBW), four major QTLs (qFBW1.1, qFBW6.1, qFBW7.1, and qFBW9.1) were determined on chromosomes 1, 6, 7, and 9, which explained 12.3, 14.5, 10.6, and 11.9% of the phenotypic variation, respectively. Moreover, two minor QTLs (qBX3.1 and qBX7.1) of Brix (BX) were mapped on chromosomes 3 and 7, explaining 8.6 and 9.7% of the phenotypic variation, respectively. The QTLs in two clusters (qPH7.1/qBX7.1 and qPH7.1/qFBW7.1) overlapped for PH, FBW and BX. The QTL, qFBW6.1, has not been previously reported. In addition, eight SNPs were converted into cleaved amplified polymorphic sequences (CAPS) markers, which can be easily detected by agarose gel electrophoresis. These QTLs and molecular markers can be used for pyramiding and marker-assisted selection studies in sorghum, to develop advanced lines that include desirable bioenergy-related traits.

2.
3 Biotech ; 9(6): 245, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31168438

ABSTRACT

Aphids are one of the devastating pests affecting the productivity of sorghum in many countries. The aim of the present investigation was to identify sweet sorghum genotypes resistant to the sugarcane aphid, Melanaphis sacchari (Zehntner). A Sequence Characterized Amplified Region (SCAR) marker linked to an aphid-resistance gene (RMES1) was first used to prescreen for resistant genotypes in 561 sorghum accessions. Molecular assays indicated that 91 sorghum accessions in the collection had the RMES1 resistance marker allele. Of those, 26 agronomically superior sweet sorghum accessions, along with three commercial cultivars and one susceptible check, were further evaluated in two locations (Antalya, a lowland province, and Konya, a highland province) under field conditions. These accessions were scored for resistance to aphid damage under natural aphid infestations. The number of aphids counted on the plant leaves and stalks in the accessions during the growing seasons was used to score resistant genotypes on a scale of 1-5, where 1 was highly resistant (plants having 0-50 aphids/plant) and 5 was highly sensitive (plants having 1000 + aphids/plant). Fumagine intensity on the leaves was also taken into consideration. Ten accessions from the lowland and one accession from the highland scored "1," indicating a high resistance to aphid infestation. A further 13 accessions scored "1" or "2" in both environments. Only two accessions scored "4," and no accession scored "5," indicating the utility of the RMES1 marker for prescreening purposes. One accession, BSS507, showed outstanding resistance to M. sacchari, with a score of "1" in both environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...