Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Asian Pac J Cancer Prev ; 25(6): 2105-2112, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918673

ABSTRACT

PURPOSE: The aim of this study was to investigate the detector size effect on small-field dosimetry and compare the performance of 6MV WFF/FFF techniques. METHODS: We investigated the detector size effect on small-field dosimetry and compared the performance of 6MV WFF/FFF techniques. PDD, profile curves, and absorbed dose were measured in water under reference conditions with 6MV (WFF/FFF) techniques. We employed Farmer FC65-P, CC13, CC01, and IBA Razor diode, with Versa Lineac. Subsequently, we replicated this assessment for small-fields under 5cmx5cm dimensions. RESULTS: For both 6MV WFF/FFF, significant dose differences (Dmax=1.47cm), were ±4.55%, ±6.7, ±12.75% and ±33.3% for 4cmx4cm, 3cmx3cm, 2cmx2cm, and 1cmx1cm, respectively. The average difference relative to D10 was observed to be ±4.66%, ±5.73%, ±6.58%, and ±8.75% for the previous field sizes. Differences between WFF/FFF are neglected values at all field sizes>2.3%, also, the output of the largest detector FC65-P is lower at 55% in the smallest field size. Variation in the profile doesn't exceed a difference of >5% in flatness between WFF/FFF at depth10cm, across all fields, while symmetry is >1%, but radiation output is considerably lower at 55% for FC65-P chamber in 2cmx2cm, 1cmx1cm compared to the CC01 chamber and Razor diode. Significant differences in 1cmx1cm, where FC65-P chamber exhibits around 49% difference compared to Razor diode with 6MV (WFF/FFF).  Conclusions: Significant differences were observed in doses with various detectors. Detector-size influences the dose. WFF/FFF techniques show no major differences in small-fields dosimetry. Utilize some situations the advantage of FFF boasting a higher dose rate, consequently reducing treatment time to half.


Subject(s)
Radiometry , Humans , Radiometry/methods , Radiotherapy Dosage , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging
2.
Asian Pac J Cancer Prev ; 24(8): 2757-2764, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37642062

ABSTRACT

BACKGROUND: The use of relatively narrow fields has become necessary with the advent of intricate and accurate radiation therapy delivery dose to patients; therefore, small-field dosimetry faces several difficulties. Both dose calculations and measurements require to be performed with extra care, due to the uncertainty that might be increased by using such small field sizes. MATERIAL AND METHODS: In this study, we investigated the effect of detectors size on the dosimetry of small fields [starting with radiation fields from (1cm x 1cm), (2cm x 1cm), and (3cm x 1cm)...etc., up to (4cm x 5cm) and (5cm x 5cm)]. We used the linear accelerator and different types of ionization chambers i.e. [Farmer FC65-P, CC13, and CC01 (pinpoint)] an addition to semiconductors i.e. (IBA Razor diode)], and we investigated all detectors to read the absorbed dose in water under the reference conditions (field 10cm x10cm, SSD 100cm and depth 10cm). RESULTS: While measuring the absolute dose under reference conditions, all detectors had a non-significant difference of less than ±2%, except for the Razor diode, which showed a significant difference of ± 5%. On the other hand, when small fields were measured, we discovered a significant difference of 48%, compared to the Razor diode. CONCLUSION: The Razor diode is more stable in small-field dosimetry than other detectors. Also, the Razor Diode is intended for relative dosimetry but, it shall not be used for absolute dose measurements.


Subject(s)
Radiation Dosage , Radiotherapy , Humans , Particle Accelerators , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...