Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1180391, 2023.
Article in English | MEDLINE | ID: mdl-37457358

ABSTRACT

Oil in fruits and seeds is an important source of calories and essential fatty acids for humans. This specifically holds true for olive oil, which is appreciated for its superior nutritional value. Most olive orchards are cultivated to produce oil, which are the outcome of fruit yield and oil content. Little information is available on the effect of nitrogen (N) on olive fruit oil content. The response of olive trees to different rates of N was therefore studied in soilless culture (3 years) and commercial field (6 years) experiments. In both experiments, fruit N level and oil biosynthesis were negatively associated. Fruit N increased in response to N fertilization level and was inversely related to fruit load. The negative correlation between fruit N and oil content was more pronounced under high fruit load, indicating sink limitation for carbon. These results agree with those reported for oilseed crops for which a trade-off between oil and protein was proposed as the governing mechanism for the negative response to elevated N levels. Our results suggest that the protein/oil trade-off paradigm cannot explain the noticeable decrease in oil biosynthesis in olives, indicating that additional mechanisms are involved in N-induced inhibition of oil production. This inhibition was not related to the soluble carbohydrate levels in the fruit, which were comparable regardless of N level. These results emphasize the importance of balanced N nutrition in oil-olive cultivation to optimize production with oil content.

2.
Waste Manag ; 169: 23-31, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37393753

ABSTRACT

To address the grand challenge of increasing the sustainability of wastewater treatment plants, hydrothermal carbonization was studied as a nutrient recovery platform, transforming sludge into a valuable hydrochar. Carbonization was achieved at different temperatures (200-300 °C) and durations (30-120 min). The highest mass recovery (73%) was observed in the lowest temperature, while the lowest (49%) was obsereved at the highest temperature. Under all reaction conditions, phosphorus recovery values exceeded 80%, with the dominated fraction of inorganic-P in the hydrochar being HCl-extractable. Although HCl-extractable P is considered a moderately labile P fraction, P phytoavailability assays indicate that sewage sludge hydrochar is an excellent source for P, surpassing soluble P, likely due to its slow-release nature. We postulate that polyphosphates constitute a significant portion of this P pool. Overall, we emphasize the benefits of using HTC as a circular economy approach to convert sludge into a valuable hydrochar.


Subject(s)
Phosphorus , Sewage , Solubility , Polyphosphates , Cold Temperature , Temperature , Carbon
3.
J Sci Food Agric ; 103(1): 48-56, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-35794785

ABSTRACT

BACKGROUND: Intensive olive (Olea europaea L.) orchards are fertilized, mostly with the macronutrients nitrogen (N), phosphorus (P) and potassium (K). The effects of different application levels of these nutrients on olive oil composition and quality were studied over 6 years in a commercial intensively cultivated 'Barnea' olive orchard in Israel. RESULTS: Oil quality and composition were affected by N, but not P or K availability. Elevated N levels increased free fatty acid content and reduced polyphenol level in the oil. Peroxide value was not affected by N, P or K levels. The relative concentrations of palmitoleic, linoleic and linolenic fatty acids increased with increasing levels of N application, whereas that of oleic acid, monounsaturated-to-polyunsaturated fatty acid ratio and oleic-to-linoleic ratio decreased. CONCLUSION: These results indicate that intensive olive orchard fertilization should be carried out carefully, especially where N application is concerned, to avoid a decrease in oil quality due to over-fertilization. Informed application of macronutrients requires leaf and fruit analyses to establish good agricultural practices, especially in view of the expansion of olive cultivation to new agricultural regions and soils. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Olea , Olive Oil/chemistry , Olea/chemistry , Fruit/chemistry , Fatty Acids, Monounsaturated , Nutrients , Fertilization , Fatty Acids/chemistry , Plant Oils/chemistry
4.
Plants (Basel) ; 10(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34579354

ABSTRACT

Phosphorus (P) availability significantly impacts olive tree reproductive development and consequential fruit production. However, the importance of P fertilization in olive cultivation is not clear, and P application is usually recommended only after P deficiency is identified. In order to determine the long-term impacts of continuous P fertilization in intensive irrigated olive cultivation, the growth and production of trees in an intensive orchard with or without P fertilization were evaluated over six consecutive seasons. Withholding of P resulted in significant reduction in soil P quantity and availability. Under lower P availability, long-term fruit production was significantly impaired due to reduced flowering and fruit set. In addition, trees under conditions of low P were characterized by higher alternate bearing fluctuations. Olive tree vegetative growth was hardly affected by P fertilizer level. The impairment of tree productivity was evident in spite of the fact that leaf P content in the treatment without P fertilization did not decrease below commonly reported and accepted thresholds for P deficiency. This implies that the leaf P content sufficiency threshold for intensive olive orchards should be reconsidered. The results demonstrate the negative impact of insufficient P fertilization and signify the need for routine P fertilization in intensive olive cultivation.

5.
New Phytol ; 230(6): 2213-2225, 2021 06.
Article in English | MEDLINE | ID: mdl-33721337

ABSTRACT

Phosphorus (P) scarcity constrains plant growth in many ecosystems worldwide. In P-poor ecosystems, the biogeochemical paradigm links plant productivity with the deposition of P-rich dust originating from desert storms. However, dust P usually has low bioavailability and is thought to be utilized solely via roots. We applied desert dust on the leaf surface of P-deficient and P-sufficient wheat, chickpea and maize to test the feasibility of direct foliar uptake of dust-P and investigate its related acquisition mechanisms. Foliar dust doubled the growth of P-deficient chickpea and wheat, crops originating near the Syrian Desert. P deficiency stimulated several leaf modifications that enabled acquisition of up to 30% of the sparingly soluble dust-P that is conventionally perceived as unavailable. These modifications increased foliar dust capture, acidified the leaf surface and, in chickpea, enhanced exudation of P-solubilizing organic acids. Maize (originating far from deserts) displayed only a marginal response to dust. The dramatic response of chickpea and wheat in comparison to maize suggests that plants that evolved in dust-rich ecosystems adopted specialized utilization strategies. Interestingly, the abovementioned foliar responses are comparable to known P uptake root responses. Given that P limitation is almost universal, a foliar P uptake pathway will have significant ecological and agricultural implications.


Subject(s)
Cicer , Phosphorus , Dust , Ecosystem , Plant Leaves , Plant Roots
6.
Plants (Basel) ; 9(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881669

ABSTRACT

Fruits are the dominant sinks for assimilates. At optimal conditions, assimilates supply can meet the demand of fruits and those of the vegetative organs; however, extreme circumstances such as strong sink strength or an environmental stress may disturb this fine balance. While most studies focus on aboveground parameters, information regarding root growth dynamics under variable sink strength are scarce. The objective of this study was to evaluate the effect of sink strength (represented by fruit load) and salinity on bell-pepper root development. Three levels of fruit load were combined with two salinity levels in plants grown in an aeroponic system. Root growth was determined both by root capacitance and destructive measurements. Salinity and sink strength significantly affected root, shoot and fruit growth dynamics. Root growth was less affected by fruit load. Salinity stress was negatively associated with shoot growth, but after an acclimation period, salinity enhanced root development. Additionally, this study shows for the first time that root capacitance is a valid approach for non-destructive measurement of root development in aeroponic systems. The good correlation measured by us (r2 0.86) opens new opportunities for continuous root growth monitoring in aeroponic systems in the future.

7.
Plant Physiol Biochem ; 143: 265-274, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31525604

ABSTRACT

Horticulture nitrogen (N) runoffs are major environmental and health concerns, but current farming practices cannot detect ineffective N applications. Hence, we set to recognize high N conditions and characterize their effects on the physiology of almond trees grown in drainage lysimeters. Water and nutrients mass balances exhibited that N benefitted almond trees in a limited range (below 60 mg N L-1 in irrigation), while higher N conditions (over a 100 mg N L-1) reduced evapotranspiration (ET) by 50% and inherently constrained N uptake. Respectively, whole-tree hydraulic conductance reduced by 37%, and photosynthesis by 17%, which implied that high N concentrations could damage trees. Through gas-chromatography, we realized that high N conditions also affected components of the citric acid cycle (TCA) and carbohydrates availability. Such changes in the metabolic composition of roots and leaves probably interfered with N assimilation and respiration. It also determined the proportions between N and starch in almond leaves, which formed a new index (N:ST) that starts at 0.4 in N deficiency and reaches 0.6-0.8 in optimal N conditions. Importantly, this index continues to increase in higher N conditions (as starch reduces) and essentially indicates to excessive N applications when it exceeds 1.1.


Subject(s)
Prunus dulcis/metabolism , Citric Acid Cycle/genetics , Citric Acid Cycle/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Transpiration/physiology , Prunus dulcis/physiology
8.
PLoS One ; 11(12): e0167591, 2016.
Article in English | MEDLINE | ID: mdl-27907133

ABSTRACT

The olive tree is generally characterized by relatively low final fruit set consequential to a significant rate of undeveloped pistils, pistil abortion, and flower and fruitlet abscission. These processes are acknowledged to be governed by competition for resources between the developing vegetative and reproductive organs. To study the role of phosphorus (P) nutritional level on reproductive development, trees were grown under four levels of P for three years in large containers. Phosphorus nutritional level was positively related to rate of reproductive bud break, inflorescence weight, rate of hermaphrodite flowers, pistil weight, fruitlet persistence, fruit set and the consequential total number of fruits. The positive impact of P nutrition on the productivity parameters was not related to carbohydrate reserves or to carbohydrate transport to the developing inflorescence. Phosphorous deficient trees showed significant impairment of assimilation rate, and yet, carbohydrates were accumulated in inflorescences at levels comparable to or higher than trees receiving high P. In contrast to female reproductive organs, pollen viability was consistently higher in P deficient trees, possibly due to the enhanced carbohydrate availability. Overall, the positive effect of P on female reproductive development was found to be independent of the total carbohydrate availability. Hence, P is speculated to have a direct influence on reproductive processes.


Subject(s)
Flowers/metabolism , Olea/metabolism , Phosphorus/metabolism , Plant Development , Carbohydrate Metabolism , Flowers/growth & development , Fruit/growth & development , Fruit/metabolism , Olea/growth & development , Reproduction
9.
Tree Physiol ; 36(3): 380-91, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26802540

ABSTRACT

We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs.


Subject(s)
Fruit/physiology , Olea/physiology , Plant Transpiration/physiology , Trees/physiology , Biomass , Plant Leaves/physiology , Plant Stems/anatomy & histology , Plant Stems/physiology , Seasons , Time Factors , Water
10.
J Plant Physiol ; 177: 1-10, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25659331

ABSTRACT

Potassium (K) is an essential macronutrient shown to play a fundamental role in photosynthetic processes and may facilitate photoinhibition resistance. In some plant species, sodium (Na) can partially substitute for K. Although photosynthetic enhancement has been well established, the mechanisms by which K or Na affects photosynthesis are not fully understood. Olive (Olea europaea L.) trees were previously shown to benefit from Na nutrition when K is limiting. In order to study the effect of K and Na on photosynthetic performance, we measured gas exchange and chlorophyll fluorescence in young olive trees supplied with either K, Na or no fertilizer, and subjected to manipulated levels of CO2, O2 and radiation. Light and CO2 response curves indicate substantially superior photosynthetic capacity of K-sufficient trees, while Na substitution generated intermediate results. The enhanced performance of K, and to a lesser extent, Na-supplied trees was found to be related mainly to modification of non-stomatal limitation. This indicates that K deficiency promotes inhibition of enzymatic-photochemical processes. Results indicate lower chlorophyll content and altered Rubisco activity as probable causes of photosynthetic impairment. Potassium deficiency was found to diminish photoprotection mechanisms due to reduced photosynthetic and photorespiratory capacity. The lower CO2 and O2 assimilation rate in K-deficient trees caused elevated levels of exited energy. Consequently, non-photochemical quenching, an alternative energy dispersion pathway, was increased. Nonetheless, K-deficient trees were shown to suffer from photodamage to photosystem-II. Sodium replacement considerably diminished the negative effect of K deficiency on photoprotection mechanisms. The overall impact of K and Na nutrition plays down any indirect effect on stomatal limitation and rather demonstrates the centrality of these elements in photochemical processes of photosynthesis and photoprotection.


Subject(s)
Olea/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Potassium/metabolism , Sodium/metabolism , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Chlorophyll A , Fluorescence , Light , Oxygen/metabolism
11.
Tree Physiol ; 34(10): 1102-17, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25281842

ABSTRACT

Potassium (K) is a macro-nutrient understood to play a role in the physiological performance of plants under drought. In some plant species, sodium (Na) can partially substitute K. Although a beneficial role of Na is well established, information regarding its nutritional role in trees is scant and its function under conditions of drought is not fully understood. The objective of the present study was to evaluate the role of K and its possible replacement by Na in olive's (Olea europaea L.) response to drought. Young and bearing olive trees were grown in soilless culture and exposed to gradual drought. In the presence of Na, trees were tolerant of extremely low K concentrations. Depletion of K and Na resulted in ∼50% reduction in CO2 assimilation rate when compared with sufficiently fertilized control plants. Sodium was able to replace K and recover the assimilation rate to nearly optimum level. The inhibitory effect of K deficiency on photosynthesis was more pronounced under high stomatal conductance. Potassium was not found to facilitate drought tolerance mechanisms in olives. Moreover, stomatal control machinery was not significantly impaired by K deficiency, regardless of water availability. Under drought, leaf water potential was affected by K and Na. High environmental K and Na increased leaf starch content and affected the soluble carbohydrate profile in a similar manner. These results identify olive as a species capable of partly replacing K by Na. The nutritional effect of K and Na was shown to be independent of plant water status. The beneficial effect of Na on photosynthesis and carbohydrates under insufficient K indicates a positive role of Na in metabolism and photosynthetic reactions.


Subject(s)
Droughts , Olea/metabolism , Plant Leaves/metabolism , Potassium/metabolism , Sodium/metabolism , Carbohydrates/biosynthesis , Carbon Dioxide/metabolism , Photosynthesis/physiology , Potassium/physiology , Sodium/physiology , Water
12.
J Agric Food Chem ; 61(47): 11261-72, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24245487

ABSTRACT

The influence of macronutrient status on olive oil properties was studied for three years. Data were analyzed by a multivariate model considering N, P, K, and fruiting year as explanatory factors. Oil quality parameters were primarily associated with N concentration in leaves and fruits which increased with N in irrigation solution. The effect of P on oil quality was mainly indirect since increased P availability increased N accumulation. The potassium level had negligible effects. The oil phenolic content decreased linearly as a function of increased leaf N, indicating protein-phenol competition in leaves. The overall saturation level of the fatty acids decreased with fruit N, resulting in increased polyunsaturated fatty acids. Free fatty acids increased with increased levels of fruit N. High fruit load tended to reduce fruit N and subsequently improve oil quality. The effect of N on oil properties depended solely on its concentration in leaves or fruits, regardless of the cause.


Subject(s)
Food Quality , Nitrogen/metabolism , Olea/physiology , Plant Oils/chemistry , Agricultural Irrigation , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/metabolism , Fruit/chemistry , Fruit/metabolism , Multivariate Analysis , Olea/chemistry , Olive Oil , Phenols/analysis , Phosphorus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Potassium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...