Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 199: 106620, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38917661

ABSTRACT

Ongoing warming is leading to the accelerated shrinkage of glaciers located on Arctic islands. Consequently, the influence of glacial meltwater on phytoplankton primary production in Arctic bays becomes critically important in an era of warming. This work studies the spatiotemporal variation of primary production and chlorophyll a concentration in the bays along the eastern coast of the Novaya Zemlya archipelago. Data were collected during nine cruises performed from July to October (2013-2022). The effect of underwater photosynthetically available radiation (PAR) and nutrients on primary production was assessed separately for bays influenced by glacial meltwater (glacial bays) and those without such influence (non-glacial bays). The median value of water column-integrated primary production (IPP) for all bays was 38 mgC m-2 d-1, characterizing them as oligotrophic areas. IPP in non-glacial bays was found to be 2.3-fold and 1.4-fold higher than that in glacial bays during summer and autumn, respectively. Underwater PAR was the main abiotic factor determining IPP during the ice-free period. In the entire bays nutrient concentrations were high, exceeding the limiting values for growth and photosynthesis of phytoplankton. It was concluded that the high turbidity from glacial meltwater runoff leads to decreased underwater PAR and, consequently, to a decline in IPP. This study demonstrates that rapid warming could have a negative impact on the productivity of high Arctic bays and their adjacent areas.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122885, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37247552

ABSTRACT

The phenomenon of fluorescence is widely used in molecular biology for studying the interaction of light with biological objects. In this article, we present an experimental investigation of the enhancement of laser-induced fluorescence of Clytia gregaria green fluorescent protein. The laser-induced fluorescence method applied in our work combines the advantages of femtosecond laser pulses and a photonic crystal cavity, with the time dependence of the fluorescence signal studied. It is shown that a green fluorescent protein solution placed in a microcavity and excited by femtosecond laser pulses leads to an increase in fluorescence on the microcavity modes, which can be estimated by two orders of magnitude. The dependences of fluorescence signal saturation on the average integrated optical pump power are demonstrated and analyzed. The results obtained are of interest for the development of potential applications of biophotonics and extension of convenient methods of laser-induced fluorescence.


Subject(s)
Lasers , Photons , Fluorescence , Green Fluorescent Proteins , Time Factors
3.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047842

ABSTRACT

Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.


Subject(s)
Aequorin , Protons , Aequorin/genetics , Aequorin/chemistry , Water , Protein Conformation , Luminescent Proteins/metabolism , Mutagenesis , Calcium/metabolism , Luminescent Measurements
4.
Sci Rep ; 12(1): 19613, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379962

ABSTRACT

Coelenterazine-v (CTZ-v), a synthetic vinylene-bridged π-extended derivative, is able to significantly alter bioluminescence spectra of different CTZ-dependent luciferases and photoproteins by shifting them towards longer wavelengths. However, Ca2+-regulated photoproteins activated with CTZ-v display very low bioluminescence activities that hampers its usage as a substrate of photoprotein bioluminescence. Here, we report the crystal structure of semi-synthetic Ca2+-discharged obelin-v bound with the reaction product determined at 2.1 Å resolution. Comparison of the crystal structure of Ca2+-discharged obelin-v with those of other obelins before and after bioluminescence reaction reveals no considerable changes in the overall structure. However, the drastic changes in CTZ-binding cavity are observed owing to the completely different reaction product, coelenteramine-v (CTM-v). Since CTM-v is certainly the main product of obelin-v bioluminescence and is considered to be a product of the "dark" pathway of dioxetanone intermediate decomposition, it explains the low bioluminescence activity of obelin and apparently of other photoproteins with CTZ-v.


Subject(s)
Calcium, Dietary , Calcium , Calcium/metabolism , Protein Conformation , Luminescent Proteins/metabolism , Luminescent Measurements
5.
Photochem Photobiol ; 98(1): 275-283, 2022 01.
Article in English | MEDLINE | ID: mdl-34727376

ABSTRACT

Nowadays the recombinant Ca2+ -regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+ -discharged photoproteins were measured and found to be quite different varying in the range of 0.16-0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine.


Subject(s)
Aequorin , Hydrozoa , Aequorin/metabolism , Animals , Calcium/metabolism , Hydrozoa/metabolism , Kinetics , Luminescent Proteins/metabolism
6.
Protein Sci ; 31(2): 454-469, 2022 02.
Article in English | MEDLINE | ID: mdl-34802167

ABSTRACT

Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.


Subject(s)
Calcium , Luminescent Measurements , Calcium/metabolism , Hydrogen Bonding , Luminescent Proteins/chemistry , Protein Conformation
7.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751691

ABSTRACT

Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues.


Subject(s)
Aequorin/metabolism , Luminescent Proteins/chemistry , Aequorin/chemical synthesis , Aequorin/chemistry , Animals , Calcium/metabolism , Hydrogen Bonding/drug effects , Imidazoles/chemistry , Imidazoles/pharmacology , Luminescent Proteins/chemical synthesis , Luminescent Proteins/metabolism , Mutagenesis, Site-Directed , Protein Conformation/drug effects , Pyrazines/chemistry , Pyrazines/pharmacology
8.
Photochem Photobiol ; 96(5): 1047-1060, 2020 09.
Article in English | MEDLINE | ID: mdl-32416626

ABSTRACT

Calcium-regulated photoproteins are found in at least five phyla of organisms. The light emitted by those photoproteins can be tuned by mutating the photoprotein and/or by modifying the substrate coelenterazine (CTZ). Thirty years ago, Shimomura observed that the luminescence activity of aequorin was dramatically reduced when the substrate CTZ was replaced by its analog v-CTZ. The latter is formed by adding a phenyl ring to the π-conjugated moiety of CTZ. The decrease in luminescence activity has not been understood until now. In this paper, through combined quantum mechanics and molecular mechanics calculations as well as molecular dynamics simulations, we discovered the reason for this observation. Modification of the substrate changes the conformation of nearby aromatic residues and enhances the π-π stacking interactions between the conjugated moiety of v-CTZ and the residues, which weakens the charge transfer to form light emitter and leads to a lower luminescence activity. The microenvironments of CTZ in obelin and in aequorin are very similar, so we predicted that the luminescence activity of obelin will also dramatically decrease when CTZ is replaced by v-CTZ. This prediction has received strong evidence from currently theoretical calculations and has been verified by experiments.


Subject(s)
Calcium/chemistry , Imidazoles/chemistry , Luminescent Measurements/methods , Luminescent Proteins/chemistry , Pyrazines/chemistry , Models, Theoretical , Molecular Dynamics Simulation , Protein Conformation , Quantum Theory
9.
Photochem Photobiol Sci ; 19(3): 313-323, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32057065

ABSTRACT

Light-sensitive Ca2+-regulated photoprotein berovin is responsible for the bioluminescence of the ctenophore Beroe abyssicola. It shares many properties of hydromedusan photoproteins although the degree of identity of its amino acid sequence with those of photoproteins is low. There is a hydrogen bond between C-terminal Pro and Arg situated in the N-terminal α-helix of hydromedusan photoproteins that supports a closed conformation of the internal cavity of the photoprotein molecule with bound 2-hydroperoxycoelenterazine. The C- and N-terminal hydrogen bond network is necessary to properly isolate the photoprotein active site from the solvent and consequently to provide a high quantum yield of the bioluminescence reaction. In order to find out which berovin residues perform the same function we modified the N- and C-termini of the protein by replacing or deleting various amino acid residues. The studies on berovin mutants showed that the interaction between C-terminal Tyr208 and Tyr13 localized in the first α-helix of the photoprotein is important for the stabilization and proper orientation of the oxygenated coelenterazine adduct within the internal cavity as well as for supporting the closed photoprotein conformation. We also suggest that the interplay between Tyr residues in ctenophore photoproteins occurs rather through the π-π interaction of their phenyl rings than through hydrogen bonds as in hydromedusan photoproteins.


Subject(s)
Ctenophora/chemistry , Luminescent Proteins/chemistry , Tyrosine/chemistry , Amino Acid Sequence , Animals , Luminescent Measurements , Protein Conformation, alpha-Helical , Sequence Alignment
10.
Photochem Photobiol ; 95(1): 8-23, 2019 01.
Article in English | MEDLINE | ID: mdl-29855041

ABSTRACT

Site-directed mutagenesis is a powerful tool to investigate the structure-function relationship of proteins and a function of certain amino acid residues in catalytic conversion of substrates during enzymatic reactions. Hence, it is not surprising that this approach was repeatedly applied to elucidate the role of certain amino acid residues in various aspects of photoprotein bioluminescence, mostly for aequorin and obelin, and to design mutant photoproteins with altered properties (modified calcium affinity, faster or slower bioluminescence kinetics, different emission color) which would either allow the development of novel bioluminescent assays or improvement of characteristics of the already existing ones. This information, however, is scattered over different articles. In this review, we systematize the findings that were made using site-directed mutagenesis studies regarding the impact of various amino acid residues on bioluminescence of hydromedusan Ca2+ -regulated photoproteins. All key residues that have been identified are pinpointed, and their influence on different aspects of photoprotein functioning such as active photoprotein complex formation, bioluminescence reaction, calcium response and light emitter formation is discussed.


Subject(s)
Calcium/metabolism , Luminescent Measurements , Luminescent Proteins/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Binding Sites , Kinetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid , Structure-Activity Relationship
11.
J Photochem Photobiol B ; 174: 97-105, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28756158

ABSTRACT

Bioluminescence of a variety of marine coelenterates is determined by Ca2+-regulated photoproteins. A strong interest in these proteins is for their wide analytical potential as intracellular calcium indicators and labels for in vitro binding assays. The presently known hydromedusan Ca2+-regulated photoproteins contain three (aequorin and clytin) or five (obelin and mitrocomin) cysteine residues with one of them strictly conserved. We have constructed Cys-free aequorin and obelin by substitution of all cysteines to serine residues. Such mutants should be of interest for researchers by the possibility to avoid the incubation with dithiothreitol (or ß-mercaptoethanol) required for producing an active photoprotein that is important for some prospective analytical assays in which the photoprotein is genetically fused with a target protein sensitive to the reducing agents. Cys-free mutants were expressed in Escherichia coli, purified, and characterized regarding the efficiency of photoprotein complex formation, functional activity, and conformational stability. The replacement of cysteine residues has been demonstrated to affect different properties of aequorin and obelin. Cys-free aequorin displays a two-fold lower specific bioluminescence activity but preserves similar activation properties and light emission kinetics compared to the wild-type aequorin. In contrast, Cys-free obelin retains only ~10% of the bioluminescence activity of wild-type obelin as well as binding coelenterazine and forming active photoprotein much less effectively. In addition, the substitution of Cys residues drastically changes the bioluminescence kinetics of obelin completely eliminating a "fast" component from the light signal decay curve. At the same time, the replacement of Cys residues increases conformational flexibility of both aequorin and obelin molecules, but again, the effect is more prominent in the case of obelin. The values of thermal midpoints of unfolding (Tm) were determined to be 53.3±0.2 and 44.6±0.4°C for aequorin and Cys-free aequorin, and 49.1±0.1 and 28.8±0.3°C for obelin and Cys-free obelin, respectively. Thus, so far only Cys-free aequorin is suitable as a partner for fusing with a tag sensitive to reducing agents since the aequorin mutant preserves almost 50% of the bioluminescent activity and can be produced with a substantial yield.


Subject(s)
Aequorin/chemistry , Aequorin/metabolism , Calcium/metabolism , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Aequorin/genetics , Amino Acid Sequence , Apoproteins/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Luminescent Measurements , Luminescent Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation
12.
Photochem Photobiol ; 93(2): 495-502, 2017 03.
Article in English | MEDLINE | ID: mdl-27861964

ABSTRACT

Upon binding their metal ion cofactors, Ca2+ -regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, clytin from Clytia gregaria, mitrocomin from Mitrocoma cellularia and obelins from Obelia longissima and Obelia geniculata-demonstrate the same bioluminescent kinetics pattern. Based on these findings, for the first time we propose a unanimous kinetic model describing the bioluminescence mechanism of Ca2+ -regulated photoproteins.


Subject(s)
Calcium/metabolism , Hydrozoa/metabolism , Luminescence , Luminescent Proteins/metabolism , Models, Biological , Animals , Hydrozoa/classification , Kinetics
13.
J Photochem Photobiol B ; 162: 286-297, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27395792

ABSTRACT

The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Sequence Deletion , Tyrosine , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Luminescence , Luminescent Proteins/metabolism , Models, Molecular , Protein Conformation
14.
Photochem Photobiol Sci ; 15(5): 691-704, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27117544

ABSTRACT

Bright bioluminescence of ctenophores is caused by Ca(2+)-regulated photoproteins. Although these photoproteins are functionally identical to and share many properties of cnidarian photoproteins, like aequorin and obelin, and retain the same spatial architecture, they are extremely sensitive to light, i.e. lose the ability to bioluminesce on exposure to light over the entire absorption spectrum. In addition, the degree of identity of their amino acid sequences with those of cnidarian photoproteins is only 29.4%. This suggests that the residues involved in bioluminescence of ctenophore and cnidarian photoproteins significantly differ. Here we describe the bioluminescent properties of berovin mutants with substitution of the residues located in the photoprotein internal cavity. Since the spatial structure of berovin bound with a substrate is not determined yet, to identify these residues we have modeled it with an accommodated substrate using the structures of some cnidarian Ca(2+)-regulated photoproteins with bound coelenterazine or coelenteramide as templates in order to obtain an adequate sampling and to take into account all possible conformers and variants for ligand-protein docking. Based on the impact of substitutions on the bioluminescent properties and model structures we speculate that within the internal cavity of ctenophore photoproteins, coelenterazine is bound as a 2-peroxy anion adduct which is stabilized owing to Coulomb interaction with a positively charged guanidinium group of Arg41 paired with Tyr204. In this case, the bioluminescence reaction is triggered by only calcium-induced conformational changes leading to the disturbance of charge-charge interaction.


Subject(s)
Calcium/metabolism , Hydrozoa/metabolism , Luminescent Proteins/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Benzeneacetamides/chemistry , Benzeneacetamides/metabolism , Binding Sites , Calcium/chemistry , Hydrozoa/chemistry , Imidazoles/chemistry , Imidazoles/metabolism , Luminescence , Luminescent Agents/chemistry , Luminescent Agents/metabolism , Luminescent Measurements , Luminescent Proteins/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Pyrazines/chemistry , Pyrazines/metabolism
15.
FEBS Lett ; 590(3): 307-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26867648

ABSTRACT

Luminous organisms use different protein-mediated strategies to modulate light emission color. Here, we report the transient-state kinetic studies of the interaction between photoprotein clytin from Clytia gregaria and its antenna protein, cgreGFP. We propose that cgreGFP forms a transient complex with Ca(2+)-bound clytin before the excited singlet state of the coelenteramide product is formed. From the spectral distribution and donor-acceptor separation distance, we infer that clytin reaction intermediates may interact only with the middle side part of cgreGFP.


Subject(s)
Green Fluorescent Proteins/metabolism , Hydrozoa/physiology , Luminescent Proteins/metabolism , Models, Molecular , Algorithms , Animals , Apoproteins/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Benzeneacetamides/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Calcium Signaling , Dimerization , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Hydrozoa/chemistry , Imidazoles/metabolism , Kinetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Protein Conformation , Protein Interaction Domains and Motifs , Protein Multimerization , Pyrazines/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 720-32, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24598741

ABSTRACT

Ca(2+)-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca(2+) inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Šresolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca(2+) discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca(2+)-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca(2+)-regulated photoproteins in some of its properties, they are believed to share a common mechanism.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques , Calcium/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Water/chemistry , Catalysis , Crystallography, X-Ray , Time Factors
17.
Photochem Photobiol Sci ; 13(3): 541-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24463740

ABSTRACT

Previous studies have stated that aequorin loses most of its bioluminescence activity upon modification of the C-terminus, thus limiting the production of photoprotein fusion proteins at its N-terminus. In the present work, we investigate the importance of the C-terminal proline and the hydrogen bonds it forms for photoprotein active complex formation, stability and functional activity. According to the crystal structures of obelin and aequorin, two Ca(2+)-regulated photoproteins, the carboxyl group of the C-terminal Pro forms two hydrogen bonds with the side chain of Arg21 (Arg15 in aequorin case) situated in the first α-helix. Whereas, deletion or substitution of the C-terminal proline could noticeably change the bioluminescence activity, stability or the yield of an active photoprotein complex. Therefore, modifications of the first α-helix Arg has a clear destructive effect on the main photoprotein properties. A C-terminal hydrogen-bond network is proposed to be important for the stability of photoprotein molecules towards external disturbances, when taking part in the formation of locked protein conformations and isolation of coelenterazine-binding cavities.


Subject(s)
Aequorin/chemistry , Arginine/chemistry , Luminescent Proteins/chemistry , Proline/chemistry , Aequorin/genetics , Crystallization , Escherichia coli , Hydrogen Bonding , Imidazoles/chemistry , Kinetics , Luminescent Measurements , Luminescent Proteins/genetics , Mutation , Protein Stability , Protein Structure, Secondary , Pyrazines/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
18.
J Photochem Photobiol B ; 127: 133-9, 2013 Oct 05.
Article in English | MEDLINE | ID: mdl-24041851

ABSTRACT

Bioluminescence of a variety of marine organisms is caused by monomeric Ca(2+)-regulated photoproteins, to which a peroxy-substituted coelenterazine, 2-hydroperoxycoelenterazine, is firmly bound. From the spatial structure the side chains of Tyr138, His175, Trp179, and Tyr190 of obelin are situated within the substrate-binding pocket at hydrogen bond distances with different atoms of the 2-hydroperoxycoelenterazine. Here we characterized several obelin mutants with substitutions of these residues regarding their bioluminescence, coelenterazine binding, and kinetics of active obelin formation. We demonstrate that Tyr138, His175, Trp179, and Tyr190 are all important for coelenterazine activation; substitution of any of these residues leads to significant decrease of the apparent reaction rate. The hydrogen bond network formed by Tyr138, Trp179 and Tyr190 participates in the proper positioning of coelenterazine in the active site and subsequent stabilization of the 2-hydroperoxy adduct of coelenterazine. His175 might serve as a proton shuttle during 2-hydroperoxycoelenterazine formation.


Subject(s)
Imidazoles/chemistry , Imidazoles/metabolism , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Pyrazines/chemistry , Pyrazines/metabolism , Amino Acid Substitution , Apoproteins/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Calcium/metabolism , Kinetics , Luminescent Proteins/genetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Spectrometry, Fluorescence
19.
Photochem Photobiol Sci ; 12(6): 1016-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23525241

ABSTRACT

Ca(2+)-regulated photoproteins are responsible for the bioluminescence of a variety of marine organisms, mostly coelenterates. The photoproteins consist of a single polypeptide chain to which an imidazopyrazinone derivative (2-hydroperoxycoelenterazine) is tightly bound. According to photoprotein spatial structures the side chains of His175, Trp179, and Tyr190 in obelin and His169, Trp173, Tyr184 in aequorin are at distances that allow hydrogen bonding with the peroxide and carbonyl groups of the 2-hydroperoxycoelenterazine ligand. We replaced these amino acids in both photoproteins by residues with different hydrogen bond donor-acceptor capacity. All mutants exhibited luciferase-like bioluminescence activity, hardly present in the wild-type photoproteins, and showed low or no photoprotein activity, except for aeqH169Q (24% of wild-type activity), obeW179Y (23%), obeW179F (67%), obeY190F (14%), and aeqY184F (22%). The results clearly support the supposition made from photoprotein spatial structures that the hydrogen bond network formed by His-Trp-Tyr triad participates in stabilizing the 2-hydroperoxy adduct of coelenterazine. These residues are also essential for the positioning of the 2-hydroperoxycoelenterazine intermediate, light emitting reaction, and for the formation of active photoprotein. In addition, we demonstrate that although the positions of His-Trp-Tyr residues in aequorin and obelin spatial structures are almost identical the substitution effects might be noticeably different.


Subject(s)
Aequorin/chemistry , Hydrozoa/chemistry , Luminescent Agents/chemistry , Luminescent Proteins/chemistry , Aequorin/genetics , Animals , Cloning, Molecular , Escherichia coli/genetics , Hydrozoa/genetics , Luminescent Agents/metabolism , Luminescent Measurements , Luminescent Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed
20.
Chembiochem ; 14(6): 739-45, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23494831

ABSTRACT

Ca(2+) -regulated photoproteins use a noncovalently bound 2-hydroperoxycoelenterazine ligand to emit light in response to Ca(2+) binding. To better understand the mechanism of formation of active photoprotein from apoprotein, coelenterazine and molecular oxygen, we investigated the spectral properties of the anaerobic apo-obelin-coelenterazine complex and the kinetics of its conversion into active photoprotein after exposure to air. Our studies suggest that coelenterazine bound within the anaerobic complex might be a mixture of N7-protonated and C2(-) anionic forms, and that oxygen shifts the equilibrium in favor of the C2(-) anion as a result of peroxy anion formation. Proton removal from N7 and further protonation of peroxy anion and the resulting formation of 2-hydroperoxycoelenterazine in obelin might occur with the assistance of His175. It is proposed that this conserved His residue might play a key role both in formation of active photoprotein and in Ca(2+) -triggering of the bioluminescence reaction.


Subject(s)
Hydrozoa/metabolism , Imidazoles/metabolism , Luminescent Proteins/metabolism , Oxygen/metabolism , Pyrazines/metabolism , Animals , Calcium/metabolism , Histidine/chemistry , Histidine/metabolism , Hydrozoa/chemistry , Imidazoles/chemistry , Luminescence , Luminescent Proteins/chemistry , Models, Molecular , Protein Binding , Protons , Pyrazines/chemistry , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...