Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(19): 8114-8120, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32893640

ABSTRACT

We present a novel approach to the generation of new crystalline phases, which is based on a combination of the topological description of crystal structures as a periodic net and the extended Zintl-Klemm concept, which establishes the structural relations between chemically and structurally simpler and more complex inorganic compounds. With this approach, we have explored the structural similarities between all known binary sulfides, selenides, and the corresponding simple sulfates and selenates and have theoretically revealed seven new high-pressure phases in the last two groups of compounds. Using density functional theory methods, we have studied the thermodynamic and mechanical stability of the new phases, have adjusted the transition pathways in the sulfate and selenate systems, and have revealed new structural correlations of the baric polymorphism in these systems. The advantages of the topological approach compared to conventional methods of modeling crystal structures are discussed and illustrated.

2.
Front Chem ; 7: 268, 2019.
Article in English | MEDLINE | ID: mdl-31119122

ABSTRACT

The expansion of renewable energy and the growing number of electric vehicles and mobile devices are demanding improved and low-cost electrochemical energy storage. In order to meet the future needs for energy storage, novel material systems with high energy densities, readily available raw materials, and safety are required. Currently, lithium and lead mainly dominate the battery market, but apart from cobalt and phosphorous, lithium may show substantial supply challenges prospectively, as well. Therefore, the search for new chemistries will become increasingly important in the future, to diversify battery technologies. But which materials seem promising? Using a selection algorithm for the evaluation of suitable materials, the concept of a rechargeable, high-valent all-solid-state aluminum-ion battery appears promising, in which metallic aluminum is used as the negative electrode. On the one hand, this offers the advantage of a volumetric capacity four times higher (theoretically) compared to lithium analog. On the other hand, aluminum is the most abundant metal in the earth's crust. There is a mature industry and recycling infrastructure, making aluminum very cost efficient. This would make the aluminum-ion battery an important contribution to the energy transition process, which has already started globally. So far, it has not been possible to exploit this technological potential, as suitable positive electrodes and electrolyte materials are still lacking. The discovery of inorganic materials with high aluminum-ion mobility-usable as solid electrolytes or intercalation electrodes-is an innovative and required leap forward in the field of rechargeable high-valent ion batteries. In this review article, the constraints for a sustainable and seminal battery chemistry are described, and we present an assessment of the chemical elements in terms of negative electrodes, comprehensively motivate utilizing aluminum, categorize the aluminum battery field, critically review the existing positive electrodes and solid electrolytes, present a promising path for the accelerated development of novel materials and address problems of scientific communication in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...