Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 8(6): 3326-36, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26725375

ABSTRACT

Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic contribution compared to the second type. The observed favorable enthalpy gain in both modes is attributed to non-covalent complexation whereas the entropy gain is associated with the re-organization of the silica surface including not only the solvent and counter ion release, but also the protein's conformational changes. Possible mechanisms are proposed to explain non-covalent complexations for each binding mode by relating the changes in the zeta potential and hydrodynamic radius to the obtained adsorption isotherms and calorimetry profile. Based on all these findings, it is proposed that lysozyme adsorption on nano-silica is the result of protein-nanoparticle and protein-protein interactions that further leads to spontaneous, non-directional and random complexation of silica through bridging flocculation.


Subject(s)
Entropy , Muramidase/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Chickens , Flocculation
2.
Carbohydr Polym ; 134: 475-84, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26428149

ABSTRACT

Xanthan gum solutions were treated with high-pressure homogenization (HPH) in order to provide alternative treatments to enzymatic and chemical modification of this carbohydrate. Rheological properties of the treated and control samples were investigated in detail to gain an understanding of functional consequences of physical modification. The molecular structural properties were investigated via Size exclusion chromatography (SEC) coupled with Multi-angle laser light scattering (MALLS) and Circular dichroism (CD). Structured network of xanthan gum solutions was lost gradually depending on the severity of the HPH treatment as evidenced by the observed changes in the viscosity and viscoelasticity of the treated solutions. Reduction in molecular weight and a significant increase in polydispersity of the polymer were the expected causes of these rheological changes. Observed increase in hydrodynamic volume upon HPH treatment was not surprising and attributed to the loss of structured networks. Changes in the rheological and structural characteristics of biopolymer were irreversible and significant recovery was not detected over a period of 11 weeks.


Subject(s)
Mechanical Phenomena , Polysaccharides, Bacterial/chemistry , Rheology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...