Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447565

ABSTRACT

Phosphorous is an essential element for the life of organisms, and phosphorus-based compounds have many uses in industry, such as flame retardancy reagents, ingredients in fertilizers, pyrotechnics, etc. Ionic liquids are salts with melting points lower than the boiling point of water. The term "polymerized ionic liquids" (PILs) refers to a class of polyelectrolytes that contain an ionic liquid (IL) species in each monomer repeating unit and are connected by a polymeric backbone to form macromolecular structures. PILs provide a new class of polymeric materials by combining some of the distinctive qualities of ILs in the polymer chain. Ionic liquids have been identified as attractive prospects for a variety of applications due to the high stability (thermal, chemical, and electrochemical) and high mobility of their ions, but their practical applicability is constrained because they lack the benefits of both liquids and solids, suffering from both leakage issues and excessive viscosity. PILs are garnering for developing non-volatile and non-flammable solid electrolytes. In this paper, we provide a brief review of phosphonium-based PILs, including their synthesis route, properties, advantages and drawbacks, and the comparison between nitrogen-based and phosphonium-based PILs. As phosphonium PILs can be used as polymer electrolytes in lithium-ion battery (LIB) applications, the conductivity and the thermo-mechanical properties are the most important features for this polymer electrolyte system. The chemical structure of phosphonium-based PILs that was reported in previous literature has been reviewed and summarized in this article. Generally, the phosphonium PILs that have more flexible backbones exhibit better conductivity values compared to the PILs that consist of a rigid backbone. At the end of this section, future directions for research regarding PILs are discussed, including the use of recyclable phosphorus from waste.

2.
Polymers (Basel) ; 15(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050283

ABSTRACT

In this paper, the properties of organic-inorganic hybrid polymer materials, which were synthesized from an aluminosilicate inorganic matrix with the addition of brushite and aminosilane grafted on one side and PEI covalently bonded composites on the other side, were examined. The synthesized organic-inorganic hybrid polymers were examined in terms of a structural, morphological, thermo-gravimetric, and adsorption-desorption analysis and also as potential CO2 capturers. The structural and phase properties as well as the percentage contents of the crystalline and amorphous phase were determined by the X-ray diffraction method. The higher content of the amorphous phase in the structure of hybrid polymers was proven in metakaolin and metakaolin-brushite hybrid samples with the addition of amino silane and with 1,000,000 PEI in a structure. The DRIFT method showed the main band changes with the addition of an organic phase and inorganic matrix. Microstructural studies with the EDS analysis showed a uniform distribution of organic and inorganic phases in the hybrid geopolymers. The thermo-gravimetric analysis showed that organic compounds are successfully bonded to inorganic polymer matrix, while adsorption-desorption analysis confirmed that the organic phase completely covered the surface of the inorganic matrix. The CO2 adsorption experiments showed that the amine-modified composites have the higher capture capacity, which is 0.685 mmol·g-1 for the GM10 sample and 0.581 mmol·g-1 for the BGM10 sample, with 1,000,000 PEI in the structure.

3.
Turk J Chem ; 47(6): 1320-1333, 2023.
Article in English | MEDLINE | ID: mdl-38544704

ABSTRACT

In this study, silane and quaternary ammonium functional methacrylate monomers were synthesized and used to construct a copolymer using an emulsion polymerization technique to control the reaction rate. The copolymer was then designed using different ratios of silane and quaternary ammonium groups to investigate the relationship between the structure and properties. The presence of the ethoxy silane group in the copolymer series provided covalent bonding through the silanol group onto cotton fabric. The presence of cationic groups also helped to cover the fabric surface. After coating the cotton textile fabric, the resistance of the dye on the fabric surface to friction was assessed and tests were conducted on washing, rubbing, water, and light fastness. Finally, the textile surfaces were investigated for their antibacterial activity against Staphylococcus aureus and Escherichia coli. It was observed that the copolymer series showed >99% killing efficiency against S. aureus but had no effect on E. coli.

4.
Turk J Chem ; 45(4): 986-1003, 2021.
Article in English | MEDLINE | ID: mdl-34707429

ABSTRACT

There is growing interest in the detection of bacteria in consumables, for example, in the food and water sectors. In this study, the aim was to produce a polymer-based bacteria biosensor via ROMP (ring opening metathesis polymerization). In the first part of the study, block and random copolymers were synthesized, and their biocidal activities were tested on the glass surface. Interdigitated electrode arrays coated with the polymers possessing the highest activity were used to screen the affinity towards different bacterial strains by monitoring impedance variations in real-time. The polymer-coated electrode could detect gram-positive and gram-negative bacteria strains at a concentration of 107 cfu/mL. The results show that ROMP-based polymer offers bacterial detection and can be used in developing biosensor devices for efficiently detecting pathogenic bacteria.

5.
Polymers (Basel) ; 11(4)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30960597

ABSTRACT

Grubbs-catalyzed ring-opening metathesis polymerization (ROMP) of carborane- and phosphonate-containing monomers has been used for the generation of hybrid block copolymers. Molecular weights with Mn of 50,000 g/mol were readily obtained with polydispersity index values, D, between 1.03⁻1.08. Reaction of the phospha ester and carborane substituted oxanorbornene block copolymer with trimethylsilyl bromide led to a new polymer with phosphonic acid functionalities. In application studies, the phospha-carborane functionalized block polymer was tested as heat resistance material. Thermal stability was investigated by thermal gravimetric analysis (TGA) and microscale combustion calorimetry (MCC) analysis. Thermal treatment and ceramic yield under air were directly correlated to the carborane content of the block copolymer. However, phosphorus content in the polymer was more crucial for the char residues when heated under nitrogen atmosphere. The peak heat release rate (PHRR) increased as the number of phosphonate functionalities increased. However, corresponding phosphonic acid derivatives featured a lower heat release rate and total heat release. Moreover, the phosphonic acid functionalities of the block copolymer offer efficient chelating capabilities for iron nanoparticles, which is of interest for applications in biomedicine in the future. The complexation with iron oxide nanoparticles was studied by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP⁻MS).

6.
Heliyon ; 4(3): e00585, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29862348

ABSTRACT

Heating a mixture of boron (impurities: carbon ∼ B50C2, boric acid - H3BO3) and tantalum (Ta) powders in nitrogen flow in a xenon high-flux optical furnace was performed. As-received powder composed of h-BN, H3BO3, TaB2, B9H11 and a number of other phases including ß-rhombohedral boron, apparently, heavily doped with Ta. FT-IR examination of any sample of the material reveals the complicated vibration spectrum containing, in particular, an absorption band near 2260 cm-1. The shapes of these bands are different for samples because powders were synthesized at different temperatures. Known, that in ß-rhombohedral boron lattice, there are nano-sized voids of different types, which allow an accommodation of single atoms or small groups of atoms. Theoretical calculations performed by the method of quasi-classical type yields the same value, 2260 cm-1, for the vibrations frequency of Ta atoms in D-type crystallographic voids in ß-rhombohedral boron lattice. Since, Ta atoms are known to prefer accommodation just in D-voids the experimentally detected bands can be identified with localized vibrations of Ta atoms.

7.
Biopolymers ; 107(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-27875623

ABSTRACT

Cationic polymers with hydrophobic side chains have gained great interest as DNA carriers since they form a compact complex with negatively charged DNA phosphate groups and interact with the cell membrane. Amphiphilic polyoxanorbornenes with different quaternary alkyl pyridinium side chains with ethyl-p(OPy2) and hexyl units-p(OPy6) bearing 10 kDa MWT were synthesized by living Ring-Opening Metathesis Polymerization method. The physicochemical characteristics: critical micellar concentration, size distribution, surface charge, and condensation of polymer/DNA complex were investigated. Morphology of complexes was monitored by Atomic force microscopy. Cytotoxicity and interaction of these complexes with model lipid vesicles mimicking the cell membrane were examined. These polymers were enabled to form small sized complexes of DNA, which interact with model membrane vesicles. It was found that the nature of hydrophobicity of the homopolymers significantly impacts rates of DNA complexation and the surface charge of the resulting complexes. These results highlight the prospect of the further examinations of these polymers as gene carriers.


Subject(s)
DNA/chemistry , Plastics/chemistry , Pyridines/chemistry , Cell Survival/drug effects , DNA/chemical synthesis , DNA/metabolism , HeLa Cells , Humans , Microscopy, Atomic Force , Plastics/metabolism , Plastics/toxicity , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
8.
Mater Sci Eng C Mater Biol Appl ; 68: 494-504, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27524046

ABSTRACT

This study presents a simple method for fabricating a highly potent dual effect antibacterial hydrogel consisting of a UV-curable cationic polyethyleneimine (QUV-PEI) and embedded silver nitrate (AgNO3). In the first part of this study, polyethyleneimine (PEI) was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (ACOM) to introduce methacryl functionality onto the backbone. UV-curable PEI was further quaternized by N-methylation with methyl iodate. Hydrogels based on QUV-PEI and AgNO3were found to have impressive biocidal properties. The antibacterial properties were assessed by spraying aqueous suspensions of bacterial cells on the surface, followed by air drying and counting the number of remaining viable cells (i.e. capable of growing into colonies). In a manner depending on the QUV-PEI content in the gel formulation, up to 99±1% of Escherichia coli and Staphylococcus aureus cells sprayed on the resulting hydrogel surfaces were killed. The inclusion of AgNO3 in the QUV-PEI based hydrogel not only enhanced the antimicrobial property against adherent bacteria but also led to the inhibition of bacterial growth in suspended culture via the long-term release of Ag/Ag(+) to the surrounding media. Cytotoxicity studies on human umbilical vein endothelial cells and MTS cell lines were also performed with hydrogels. These findings confirm that hydrogels are potentially useful as antimicrobial agents in a wide variety of applications.


Subject(s)
Anti-Infective Agents , Escherichia coli/growth & development , Hydrogels , Polyethyleneimine , Quaternary Ammonium Compounds , Silver Nitrate , Staphylococcus aureus/growth & development , Ultraviolet Rays , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Silver Nitrate/chemistry , Silver Nitrate/pharmacology
9.
Colloids Surf B Biointerfaces ; 127: 73-8, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25646740

ABSTRACT

The purpose of this study is to understand the antibacterial properties of cationic polymers on solid surfaces by investigating the structure-activity relationships. The polymer synthesis was carried via ring opening metathesis polymerization (ROMP) of oxanorbornene derivatives. Modulation of molecular weights and alkyl chain lengths of the polymers were studied to investigate the antibacterial properties on the glass surface. Fluorescein (Na salt) staining contact angle measurements were used to characterize the positive charge density and hydrophobicity on the polymer coated surfaces. Positive charge density for the surface coated polymers with molecular weights of 3000 and 10,000 g mol(-1) is observed to be in the range of 2.3-28.5 nmol cm(-2). The ROMP based cationic pyridinium polymer with hexyl unit exhibited the highest bactericidal efficiency against Escherichia coli on solid surface killing 99% of the bacteria in 5 min. However, phenyl and octyl functionalized quaternary pyridinium groups exhibited lower biocidal properties on the solid surfaces compared to their solution phase biocidal properties. Studying the effect of threshold polymer concentrations on the antibacterial properties indicated that changing the concentrations of polymer coatings on the solid surface dramatically influences antibacterial efficiency.


Subject(s)
Anti-Bacterial Agents/pharmacology , Polymerization , Polymers/chemistry , Polymers/pharmacology , Anti-Bacterial Agents/chemistry , Cations , Escherichia coli/drug effects , Escherichia coli/growth & development , Glass/chemistry , Microbial Sensitivity Tests , Static Electricity , Water/chemistry
10.
Article in English | MEDLINE | ID: mdl-25222320

ABSTRACT

The novel axially dicarborane substituted silicon (IV) (SiPc-DC) phthalocyanine was synthesized by treating silicon phthalocyanine dichloride SiPc(Cl)2 (SiPc) with o-Carborane monool. The compound was characterized by mass spectrometry, UV-Vis, FT-IR, (1)H and (11)B Nuclear Magnetic Resonance Spectroscopy (NMR). Spectral, photophysical (fluorescence quantum yield) and photochemical (singlet oxygen (ΦΔ) and photodegradation quantum yield (Φd)) properties of the complex were reported in different solutions (Dimethyl sulfoxide (DMSO), Dimethylformamide (DMF) and Toluene). The results of spectral measurements showed that both SiPc and carborane cage can have potential to be used as sensitizers in photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) by their singlet oxygen efficiencies (ΦΔ=0.41, 0.39).


Subject(s)
Boranes/chemistry , Chemical Phenomena , Indoles/chemistry , Indoles/chemical synthesis , Organosilicon Compounds/chemistry , Organosilicon Compounds/chemical synthesis , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Dimethyl Sulfoxide/chemistry , Dimethylformamide/chemistry , Electrons , Photolysis , Quantum Theory , Singlet Oxygen/chemistry , Solvents/chemistry , Spectrometry, Fluorescence , Toluene/chemistry
11.
Chemistry ; 15(2): 433-9, 2009.
Article in English | MEDLINE | ID: mdl-19021176

ABSTRACT

A direct comparison of two strategies for designing antimicrobial polymers is presented. Previously, we published several reports on the use of facially amphiphilic (FA) monomers which led to polynorbornenes with excellent antimicrobial activities and selectivities. Our polymers obtained by copolymerization of structurally similar segregated monomers, in which cationic and non-polar moieties reside on separate repeat units, led to polymers with less pronounced activities. A wide range of polymer amphiphilicities was surveyed by pairing a cationic oxanorbornene with eleven different non-polar monomers and varying the comonomer feed ratios. Their properties were tested using antimicrobial assays and copolymers possessing intermediate hydrophobicities were the most active. Polymer-induced leakage of dye-filled liposomes and microscopy of polymer-treated bacteria support a membrane-based mode of action. From these results there appears to be profound differences in how a polymer made from FA monomers interacts with the phospholipid bilayer compared with copolymers from segregated monomers. We conclude that a well-defined spatial relationship of the whole polymer is crucial to obtain synthetic mimics of antimicrobial peptides (SMAMPs): charged and non-polar moieties need to be balanced locally, for example, at the monomer level, and not just globally. We advocate the use of FA monomers for better control of biological properties. It is expected that this principle will be usefully applied to other backbones such as the polyacrylates, polystyrenes, and non-natural polyamides.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Design , Polymers/chemical synthesis , Polymers/pharmacology , Surface-Active Agents/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/cytology , Bacteria/drug effects , Cell Membrane/drug effects , Hemolysis/drug effects , Plastics/chemistry , Polymers/chemistry
12.
Mater Sci Eng R Rep ; 57(1-6): 28-64, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-18160969

ABSTRACT

Infectious disease is a critically important global healthcare issue. In the U.S. alone there are 2 million new cases of hospital-acquired infections annually leading to 90,000 deaths and 5 billion dollars of added healthcare costs. Couple these numbers with the appearance of new antibiotic resistant bacterial strains and the increasing occurrences of community-type outbreaks, and clearly this is an important problem. Our review attempts to bridge the research areas of natural host defense peptides (HDPs), a component of the innate immune system, and biocidal cationic polymers. Recently discovered peptidomimetics and other synthetic mimics of HDPs, that can be short oligomers as well as polymeric macromolecules, provide a unique link between these two areas. An emerging class of these mimics are the facially amphiphilic polymers that aim to emulate the physicochemical properties of HDPs but take advantage of the synthetic ease of polymers. These mimics have been designed with antimicrobial activity and, importantly, selectivity that rivals natural HDPs. In addition to providing some perspective on HDPs, selective mimics, and biocidal polymers, focus is given to the arsenal of biophysical techniques available to study their mode of action and interactions with phospholipid membranes. The issue of lipid type is highlighted and the important role of negative curvature lipids is illustrated. Finally, materials applications (for instance, in the development of permanently antibacterial surfaces) are discussed as this is an important part of controlling the spread of infectious disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...