Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1301172, 2023.
Article in English | MEDLINE | ID: mdl-38025057

ABSTRACT

This manuscript is dedicated to a comprehensive exploration of the multifaceted challenge of fast electron-hole recombination in titanium dioxide photocatalysis, with a primary focus on its critical role in advancing the field of water photo splitting. To address this challenge, three prominent approaches-Schottky barriers, Z-scheme systems, and type II heterojunctions-were rigorously investigated for their potential to ameliorate TiO2's photocatalytic performance toward water photo splitting. Three distinct dopants-silver, cadmium oxide, and zinc oxide-were strategically employed. This research also delved into the dynamic interplay between these dopants, analyzing the synergetic effects that arise from binary and tertiary doping configurations. The results concluded that incorporation of Ag, CdO, and ZnO dopants effectively countered the fast electron-hole recombination problem in TiO2 NPs. Ag emerged as a critical contributor at higher temperatures, significantly enhancing photocatalytic performance. The photocatalytic system exhibited a departure from Arrhenius behavior, with an optimal temperature of 40°C. Binary doping systems, particularly those combining CdO and ZnO, demonstrated exceptional photocatalytic activity at lower temperatures. However, the ternary doping configuration involving Ag, CdO, and ZnO proved to be the most promising, surpassing many functional materials. In sum, this study offers valuable insights into how Schottky barriers, Z-scheme systems, and type II heterojunctions, in conjunction with specific dopants, can overcome the electron-hole recombination challenge in TiO2-based photocatalysis. The results underscore the potential of the proposed ternary doping system to revolutionize photocatalytic water splitting for efficient green hydrogen production, significantly advancing the field's understanding and potential for sustainable energy applications.

2.
PLoS One ; 17(10): e0276097, 2022.
Article in English | MEDLINE | ID: mdl-36256606

ABSTRACT

Nanofibrous morphology and the doping technique can overcome the problem of electron/hole fast recombination and improve the activity of titanium oxide-based photocatalysts. In this study, nanoparticulate and nanofibrous forms of CdTiO3-incorporated TiO2 were synthesized with different cadmium contents; the morphology and composition were determined by SEM, TEM, EDX, and XRD techniques. The nanomorphology, cadmium content, and reaction temperature of Cd-doped TiO2 nanostructures were found to be strongly affect the hydrogen production rate. Nanofibrous morphology improves the rate of hydrogen evolution by around 10 folds over the rate for nanoparticles due to electron confinement in 0D nanostructures. The average rates of hydrogen production for samples of 0.5 wt.% Cd are 0.7 and 16.5 ml/gcat.min for nanoparticles and nanofibers, respectively. On the other hand, cadmium doping resulted in increasing the hydrogen production rate from 9.6 to 19.7 ml/gcat.min for pristine and Cd-doped (2 wt%) TiO2 nanofibers, respectively. May be the formation of type I heterostructures between the TiO2 matrix and CdTiO3 nanoparticles is the main reason for the observed enhancement of photocatalytic activity due to the strong suppressing of electron/holes recombination process. Consequently, the proposed photocatalyst could be exploited to produce hydrogen from scavenger-free solution. Varying reaction temperature suggests that hydrogen evolution over the proposed catalyst is incompatible with the Arrhenius equation. In particular, reaction temperature was found to have a negative influence on photocatalytic activity. This work shows the prospects for using CdTiO3 as a co-catalyst in photon-induced water splitting and indicates a substantial enhancement in the rate of hydrogen production upon using the proposed photocatalyst in nanofibrous morphology.


Subject(s)
Nanostructures , Water , Water/chemistry , Cadmium , Titanium/chemistry , Nanostructures/chemistry , Light , Hydrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...