Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 15(2): 314-325, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33784624

ABSTRACT

This paper studies the performance of a resonant capacitive wireless power transfer (C-WPT) link for biomedical implants in the presence of non-idealities. The study emphasizes on finding an accurate electrical model of a practical C-WPT link, which can be used to investigate the performance of the link under different practical/non-ideal scenarios. A sound knowledge about these non-idealities is crucial for device optimization. For the first time, a circuit model has been presented and analyzed, which is applicable to a practical C-WPT link undergoing plate mismatch, flexion, tissue contraction, and stretching. Our model considers the finite conductivity of the body tissue and fringe fields formed by capacitor plates. Analytical and HFSSTM simulation results have been presented for different non-idealities, and are in good agreement. Additionally, we show a procedure to interpolate non-ideal case results. The study shows that plate misalignment (causing reduction in parallel plate overlap area) and skin tissue contraction (while muscle grows) are the most detrimental individual factors to the link performance. We recorded ∼32% and ∼14% power transfer efficiency decrease due to these two worst-case scenarios, respectively for a C-WPT link comprising of two pairs of 400 mm2 parallel plates (12 cm edge-to-edge separation) coated with 63.5 µm thick Kapton layer and aligned around a 3 mm tissue at 20 MHz.


Subject(s)
Electric Power Supplies , Wireless Technology , Electricity , Prostheses and Implants
2.
IEEE Trans Biomed Circuits Syst ; 14(6): 1183-1194, 2020 12.
Article in English | MEDLINE | ID: mdl-33186120

ABSTRACT

This paper reports on a low-power readout IC (ROIC) for high-fidelity recording of the photoplethysmogram (PPG) signal. The system comprises a highly reconfigurable, continuous-time, second-order, incremental delta-sigma modulator (I-ΔΣM) as a light-to-digital converter (LDC), a 2-channel 10b light-emitting diode (LED) driver, and an integrated digital signal processing (DSP) unit. The LDC operation in intermittent conversion phases coupled with digital assistance by the DSP unit allow signal-aware, on-the-fly cancellation of the dc and ambient light-induced components of the photodiode current for more efficient use of the full-scale input range for recording of the small-amplitude, ac, PPG signal. Fabricated in TSMC 0.18 µm 1P/6M CMOS, the PPG ROIC exhibits a high dynamic range of 108.2 dB and dissipates on average 15.7 µW from 1.5 V in the LDC and 264 µW from 2.5 V in one LED (and its driver), while operating at a pulse repetition frequency of 250 Hz and 3.2% duty cycling. The overall functionality of the ROIC is also demonstrated by high-fidelity recording of the PPG signal from a human subject fingertip in the presence of both natural light and indoor light sources of 60 Hz.


Subject(s)
Photoplethysmography/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Fingers/blood supply , Humans , Light , Semiconductors
3.
IEEE Trans Biomed Circuits Syst ; 14(6): 1195-1206, 2020 12.
Article in English | MEDLINE | ID: mdl-33216720

ABSTRACT

This paper presents a reconfigurable, dual-output, regulating rectifier featuring pulse width modulation (PWM) and dual-mode pulse frequency modulation (PFM) control schemes for single-stage ac-to-dc conversion to provide two independently regulated supply voltages (each in 1.5-3 V) from an input ac voltage. The dual-mode PFM controllers feature event-driven regulation as well as frequency division. The former incorporates stable, fast, digital feedback loops to adaptively adjust the driving frequency of four power transistors, MP1∼4, based on the desired output power level to perform voltage regulation and deliver fast, transient, load currents. The latter sets the driving frequency of MP1∼4 to a user-defined fraction (1/1 âˆ¼ 1/32) of the input frequency (1-10 MHz). The PWM controllers incorporate stable, analog, feedback loops to accurately adjust the conduction duration of MP1∼4 for voltage regulation and can be combined with PFM frequency division for an extended operation dynamic range. Fabricated in 0.18 µm 1P/6M CMOS, the regulating rectifier features power conversion efficiency (PCE) of >83.8% at 2 and 5 MHz, with the first output channel delivering ∼1 mW from VDD of 1.5 V and the second output channel delivering variable power from VDDH of 2.5 V to a load in the range of 0.1 to 1 kΩ. Peak PCE values of 90.75% (2 MHz, 100 Ω) and 90.7% (5 MHz, 200 Ω) are also measured. The regulating rectifier is suitable for the emerging modality of capacitive wireless power transfer to biomedical implants.


Subject(s)
Electric Power Supplies , Prostheses and Implants , Signal Processing, Computer-Assisted/instrumentation , Wireless Technology/instrumentation , Prosthesis Design
4.
IEEE Trans Neural Syst Rehabil Eng ; 26(5): 1093-1099, 2018 05.
Article in English | MEDLINE | ID: mdl-29752245

ABSTRACT

This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.


Subject(s)
Neural Prostheses , Prosthesis Design , Wireless Technology , Algorithms , Electric Capacitance , Electrodes , Humans , Polymers , Prostheses and Implants , Xylenes
6.
ScientificWorldJournal ; 2014: 595962, 2014.
Article in English | MEDLINE | ID: mdl-24587733

ABSTRACT

A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium. The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.


Subject(s)
Bone Density/drug effects , Probiotics/pharmacology , Animals , Calcium, Dietary/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...