Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 186: 114370, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36459773

ABSTRACT

Habitat suitability modelling was used to test the relationship between coastal discharges and seagrass occurrence based on data from Adelaide (South Australia). Seven variables (benthic light including epiphyte shading, temperature, salinity, substrate, wave exposure, currents and tidal exposure) were simulated using a coupled hydrodynamic-biogeochemical model and interrogated against literature-derived thresholds for nine local seagrass species. Light availability was the most critical driver across the study area but wave exposure played a key role in shallow nearshore areas. Model validation against seagrass mapping data showed 86 % goodness-of-fit. Comparison against later mapping data suggested that modelling could predict ~745 ha of seagrass recovery in areas previously classified as 'false positives'. These results suggest that habitat suitability modelling is reliable to test scenarios and predict seagrass response to reduction of land-based loads, providing a useful tool to guide (investment) decisions to prevent loss and promote recovery of seagrasses.


Subject(s)
Ecosystem , South Australia
2.
Mar Pollut Bull ; 170: 112595, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34126446

ABSTRACT

The response of mangrove (Avicennia marina) seedlings to treated (wet) sludge from a sewage treatment plant (STP) was tested in a randomized block design experiment at a tree nursery on Mubarraz Island in the Arabian Gulf. The growth response of seedlings to half-strength and full-strength STP sludge was monitored over 103 days and compared with the response to freshwater, seawater and half-strength seawater treatments. Sludge treatments resulted in significantly greater plant growth, leaf number, leaf biomass and root biomass than the other treatments did. The positive effect of STP sludge on seedling growth is attributed to enhanced levels of total nitrogen (8.9 ± 0.1 mg l-1) and total phosphorus (7.8 ± 0.2 mg l-1) in the sludge and its low salinity. These results suggest that sludge from sewage treatment plants may be beneficially used in mangrove nurseries and plantations in this arid region, where soils are nutrient-poor and fresh water is scarce.


Subject(s)
Avicennia , Seedlings , Biomass , Salinity , Sewage
3.
PLoS One ; 9(9): e107195, 2014.
Article in English | MEDLINE | ID: mdl-25197883

ABSTRACT

Sediment loads have long been known to be deleterious to corals, but the effects of turbidity and settling particles have not previously been partitioned. This study provides a novel approach using inert silicon carbide powder to partition and quantify the mechanical effects of sediment settling versus reduced light under a chronically high sedimentary regime on two turbid water corals commonly found in Singapore (Galaxea fascicularis and Goniopora somaliensis). Coral fragments were evenly distributed among three treatments: an open control (30% ambient PAR), a shaded control (15% ambient PAR) and sediment treatment (15% ambient PAR; 26.4 mg cm(-2) day(-1)). The rate of photosynthesis and respiration, and the dark-adapted quantum yield were measured once a week for four weeks. By week four, the photosynthesis to respiration ratio (P/R ratio) and the photosynthetic yield (Fv/Fm) had fallen by 14% and 3-17% respectively in the shaded control, contrasting with corals exposed to sediments whose P/R ratio and yield had declined by 21% and 18-34% respectively. The differences in rates between the shaded control and the sediment treatment were attributed to the mechanical effects of sediment deposition. The physiological response to sediment stress differed between species with G. fascicularis experiencing a greater decline in the net photosynthetic yield (13%) than G. somaliensis (9.5%), but a smaller increase in the respiration rates (G. fascicularis = 9.9%, G. somaliensis  = 14.2%). These different physiological responses were attributed, in part, to coral morphology and highlighted key physiological processes that drive species distribution along high to low turbidity and depositional gradients.


Subject(s)
Anthozoa/drug effects , Anthozoa/radiation effects , Energy Metabolism/drug effects , Energy Metabolism/radiation effects , Geologic Sediments/chemistry , Light , Optical Phenomena , Animals , Anthozoa/metabolism , Anthozoa/physiology , Cell Respiration/drug effects , Cell Respiration/radiation effects , Mechanical Phenomena , Photosynthesis/drug effects , Photosynthesis/radiation effects
4.
Mar Pollut Bull ; 83(2): 417-24, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24508045

ABSTRACT

Due to increasing development Southeast Asia's coastlines are undergoing massive changes, but the associated impacts on marine habitats are poorly known. Singapore, a densely populated island city-state, is a quintessential example of coastal modification that has resulted in the (hitherto undocumented) loss of seagrass. We reconstructed the historic extent and diversity of local seagrass meadows through herbarium records and backwards extrapolation from contemporary seagrass locations. We also determined the current status of seagrass meadows using long-term monitoring data and identified the main threats to their presence in Singapore. Results show that, even though ∼45% of seagrass has been lost during the last five decades, species diversity remains stable. The main cause of seagrass loss was, and continues to be, land reclamation. We conclude that strict controls on terrestrial runoff and pollution have made it possible for seagrass to persist adjacent to this highly urbanised city-state.


Subject(s)
Alismatales/physiology , Cities , Ecosystem , Conservation of Natural Resources , Population Dynamics
5.
Mar Pollut Bull ; 83(2): 467-74, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24382468

ABSTRACT

Seagrasses have substantial capacity to survive long periods of light reduction, but how acclimation to chronic low light environments may influence their ability to cope with additional stress is poorly understood. This study examines the effect of temporal light reduction by adding two levels of shading to Halophila ovalis plants in two meadows with different light histories, one characterized by a low light (turbid) environment and the other by a relatively high light (clear) environment. Additional shading resulted in complete mortality for both shading treatments at the turbid site while the clear site showed a pattern of decreased shoot density and increased photochemical efficiency (Fv/Fm) with increased shading. These contrasting results for the same species in two different locations indicate that acclimation to chronic low light regimes can affect seagrass resilience and highlights the importance of light history in determining the outcome of exposure to further (short-term) stress.


Subject(s)
Environment , Hydrocharitaceae/physiology , Light , Acclimatization , Hydrocharitaceae/radiation effects , Photosynthesis/physiology
6.
PLoS One ; 8(3): e58819, 2013.
Article in English | MEDLINE | ID: mdl-23555597

ABSTRACT

Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1-68.6 settled individuals per 10,000 m(2)). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.


Subject(s)
Bivalvia , Models, Theoretical , Animals , Coral Reefs , Ecosystem , Geography , Hydrodynamics , Islands , Oceans and Seas , Population Density , Population Dynamics , Singapore
7.
Mar Pollut Bull ; 64(9): 1737-65, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22682583

ABSTRACT

A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10 mg L(-1) in pristine offshore reef areas to >100 mg L(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000 mg L(-1) while others show mortality after exposure (weeks) to concentrations as low as 30 mg L(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6 weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10 mg cm(-2) d(-1) to >400 mg cm(-2) d(-1). The durations that corals can survive high sedimentation rates range from <24 h for sensitive species to a few weeks (>4 weeks of high sedimentation or >14 days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.


Subject(s)
Anthozoa/physiology , Coral Reefs , Environmental Monitoring , Geologic Sediments/analysis , Ships , Water Pollutants/analysis , Animals , Environment
8.
Mar Pollut Bull ; 52(12): 1553-72, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17078974

ABSTRACT

Main potential impacts on seagrasses from dredging and sand mining include physical removal and/or burial of vegetation and effects of increased turbidity and sedimentation. For seagrasses, the critical threshold for turbidity and sedimentation, as well as the duration that seagrasses can survive periods of high turbidity or excessive sedimentation vary greatly among species. Larger, slow-growing climax species with substantial carbohydrate reserves show greater resilience to such events than smaller opportunistic species, but the latter display much faster post-dredging recovery when water quality conditions return to their original state. A review of 45 case studies worldwide, accounting for a total loss of 21,023 ha of seagrass vegetation due to dredging, is indicative of the scale of the impact of dredging on seagrasses. In recent years, tighter control in the form of strict regulations, proper enforcement and monitoring, and mitigating measures together with proper impact assessment and development of new environmental dredging techniques help to prevent or minimize adverse impacts on seagrasses. Costs of such measures are difficult to estimate, but seem negligible in comparison with costs of seagrass restoration programmes, which are typically small-scale in approach and often have limited success. Copying of dredging criteria used in one geographic area to a dredging operation in another may in some cases lead to exaggerated limitations resulting in unnecessary costs and delays in dredging operations, or in other cases could prove damaging to seagrass ecosystems. Meaningful criteria to limit the extent and turbidity of dredging plumes and their effects will always require site-specific evaluations and should take into account the natural variability of local background turbidity.


Subject(s)
Alismatales/physiology , Environment , Costs and Cost Analysis , Geologic Sediments , Oceans and Seas
9.
Oecologia ; 99(1-2): 45-59, 1994 Sep.
Article in English | MEDLINE | ID: mdl-28313947

ABSTRACT

Seasonal dynamics were studied by monthly monitoring of biological and environmental variables in permanent quadrats in two contrasting intertidal seagrass beds in South Sulawesi, Indonesia, from February 1991 to January 1992. Datasets were analysed with canonical correlation analysis for correlations between environmental and biological variables. Considerable variation in biomass, production and plant tissue nutrient contents in a monospecific seagrass bed of Enhalus acoroides, growing on a coastal terrigenous mudbank (Gusung Tallang), was assumed to be related to riverine influences of the nearby Tallo River. The variation in seagrass variables at this site could, however, not be significantly correlated to seasonal patterns in rainfall, salinity, tides, nutrient availability, water motion or turbidity. A seasonal cycle in biomass, production and nutrient contents in a mixed seagrass bed of Thalassia hemprichii and E. acoroides, growing on carbonate sand on the reef flat of an offshore coral island (Barang Lompo), was found to be largely determined by tidal exposure and water motion. Exposure of the intertidal seagrass bed during hours of low water during spring tides showed a gradual shift from exposure during the night (January-June) to exposure during daylight (July-December). Daylight exposure resulted in a significant loss of above-ground plant biomass through desiccation and 'burning' of leaves. The observed seasonal dynamics of the seagrass bed on reef sediment contrast with reports from the Caribbean, where the effect of tidal exposure on comparable shallow-water seagrass communities is relatively insignificant due to a small tidal amplitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...