Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(41): 36354-36365, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278102

ABSTRACT

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs), which are endowed with beneficial biological activities as they reduce inflammation, regulate endothelial tone, improve mitochondrial function, and decrease oxidative stress. Therefore, inhibition of sEH for maintaining high EET levels is implicated as a new therapeutic modality with broad clinical applications for metabolic, renal, and cardiovascular disorders. In our search for new sEH inhibitors, we designed and synthesized novel amide analogues of the quinazolinone-7-carboxylic acid derivative 5, a previously discovered 5-lipoxygenase-activating protein (FLAP) inhibitor, to evaluate their potential for inhibiting sEH. As a result, we identified new quinazolinone-7-carboxamides that demonstrated selective sEH inhibition with decreased FLAP inhibitor properties. The tractable SAR results indicated that the amide and thiobenzyl fragments flanking the quinazolinone nucleus are critical features governing the potent sEH inhibition, and compounds 34, 35, 37, and 43 inhibited the sEH activity with IC50 values of 0.30-0.66 µM. Compound 34 also inhibited the FLAP-mediated leukotriene biosynthesis (IC50 = 2.91 µM). In conclusion, quinazolinone-7-carboxamides can be regarded as novel lead structures, and newer analogues with improved efficiency against sEH along with or without FLAP inhibition can be generated.

2.
Eur J Med Chem ; 231: 114167, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35152061

ABSTRACT

Microsomal prostaglandin E2 synthase-1 (mPGES-1) is recognized as a promising therapeutic target for next-generation anti-inflammatory drugs to treat inflammatory diseases. In this study, we report the identification of new, potent and selective inhibitors of human mPGES-1 such as compounds 10, 31 and 49 with IC50 of 0.03-0.09 µM in a cell-free assay of PGE2 production. Compound 10 and 49 also inhibited leukotriene C4 synthase (LTC4S) at sub-µM concentrations (IC50 = 0.7 and 0.4 µM, respectively), affording compounds dually targeting inflammatory PGE2 and cysteinyl leukotriene (cys-LT) biosynthesis. However, compound 31 showed substantial selectivity towards mPGES-1 (IC50 = 0.03 µM) with a decreased inhibitory activity on LTC4S (IC50 = 2.8 µM), and also on other related targets such as FLAP and 5-LO. These oxadiazole thione-benzimidazole derivatives warrant further exploration of new and alternative analogs that may lead to the identification of novel derivatives with potent anti-inflammatory properties.


Subject(s)
Leukotriene C4 , Microsomes , Anti-Inflammatory Agents/pharmacology , Benzimidazoles/pharmacology , Dinoprostone , Humans , Prostaglandin-E Synthases
SELECTION OF CITATIONS
SEARCH DETAIL
...