Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-513517

ABSTRACT

A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-492641

ABSTRACT

Widespread and frequent testing is critical to prevent the spread of COVID-19, and rapid antigen tests are the diagnostic tool of choice in many settings. With new viral variants continuously emerging and spreading rapidly, the effect of mutations on antigen test performance is a major concern. In response to the spread of variants the National Institutes of Healths Rapid Acceleration of Diagnostics (RADx(R)) initiative created a Variant Task Force to assess the impact of emerging SARS-CoV-2 variants on in vitro diagnostic testing. To evaluate the impact of mutations on rapid antigen tests we developed a lentivirus-mediated mammalian surface-display platform for the SARS-CoV-2 Nucleocapsid protein, the target of the majority of rapid antigen tests. We employed deep mutational scanning (DMS) to directly measure the effect of all possible Nucleocapsid point mutations on antibody binding by 17 diagnostic antibodies used in 11 commercially available antigen tests with FDA emergency use authorization (EUA). The results provide a complete map of the antibodies epitopes and their susceptibility to mutational escape. This approach identifies linear epitopes, conformational epitopes, as well as allosteric escape mutations in any region of the Nucleocapsid protein. All 17 antibodies tested exhibit distinct escape mutation profiles, even among antibodies recognizing the same folded domain. Our data predict no vulnerabilities of rapid antigen tests for detection of mutations found in currently and previously dominant variants of concern and interest. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutation profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system. Further, our mammalian surface-display platform combined with DMS is a generalizable platform for complete mapping of protein-protein interactions.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22270279

ABSTRACT

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...