Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Am J Transl Res ; 14(2): 1234-1245, 2022.
Article in English | MEDLINE | ID: mdl-35273725

ABSTRACT

Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate to manufacture various plastic products. However, the potential effects of DEHP on erythropoiesis have not been investigated comprehensively. Here, we aimed to investigate whether DEHP modulated the function of hematopoietic stem and progenitor cells (HSPCs) to influence erythropoiesis, and to explore the associated mechanisms. In the present study, human cell lines with a capacity to differentiate into erythroid cells and murine bone marrow cells were treated with DEHP. DEHP not only impaired HSPC function, but also suppressed erythroid differentiation in a dose-dependent manner. In addition, DEHP removal restored HSPC activity. To explore how DEHP interfered with erythroid differentiation, we focused on energy metabolism and Klotho expression. DEHP suppressed erythroid differentiation via upregulating Klotho expression, while it did not via modulating cellular bioenergetics. Therefore, our results provided a novel insight into the pathophysiological link between phthalates and dysregulated erythroid differentiation.

2.
Front Nutr ; 8: 762363, 2021.
Article in English | MEDLINE | ID: mdl-34901113

ABSTRACT

Glucosamine (GlcN) is the most widely consumed dietary supplement and exhibits anti-inflammatory effects. However, the influence of GlcN on immune cell generation and function is largely unclear. In this study, GlcN was delivered into mice to examine its biological function in hematopoiesis. We found that GlcN promoted the production of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs), both in vivo and in vitro. Additionally, GlcN upregulated the expression of glucose transporter 1 in hematopoietic stem and progenitor cells (HSPCs), influenced HSPC functions, and downregulated key genes involved in myelopoiesis. Furthermore, GlcN increased the expression of arginase 1 and inducible nitric oxide synthase to produce high levels of reactive oxygen species, which was regulated by the STAT3 and ERK1/2 pathways, to increase the immunosuppressive ability of MDSCs. We revealed a novel role for GlcN in myelopoiesis and MDSC activity involving a potential link between GlcN and immune system, as well as the new therapeutic benefit.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21249577

ABSTRACT

BackgroundThrombotic complications occur at high rates in hospitalized patients with COVID-19, yet the impact of intensive antithrombotic therapy on mortality is uncertain. Research QuestionHow does in-hospital mortality compare with intermediate-versus prophylactic-dose anticoagulation, and separately with in-hospital aspirin versus no antiplatelet therapy, in treatment of COVID-19? Study Design and MethodsUsing data from 2785 hospitalized adult COVID-19 patients, we established two separate, nested cohorts of patients (1) who received intermediate- or prophylactic-dose anticoagulation ("anticoagulation cohort", N = 1624), or (2) who were not on home antiplatelet therapy and received either in-hospital aspirin or no antiplatelet therapy ("aspirin cohort", N = 1956). Propensity score matching utilizing various markers of illness severity and other patient-specific covariates yielded treatment groups with well-balanced covariates in each cohort. The primary outcome was cumulative incidence of in-hospital death. ResultsAmong propensity score-matched patients in the anticoagulation cohort (N = 382), in a multivariable regression model, intermediate-compared to prophylactic-dose anticoagulation was associated with a significantly lower cumulative incidence of in-hospital death (hazard ratio 0.518 [0.308-0.872]). Among propensity-score matched patients in the aspirin cohort (N = 638), in a multivariable regression model, in-hospital aspirin compared to no antiplatelet therapy was associated with a significantly lower cumulative incidence of in-hospital death (hazard ratio 0.522 [0.336-0.812]). InterpretationIn this propensity score-matched, observational study of COVID-19, intermediate-dose anticoagulation and aspirin were each associated with a lower cumulative incidence of in-hospital death. Summary conflict of interest statementsNo conflict of interest exists for any author on this manuscript.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20184234

ABSTRACT

As of 28 August 2020, there have been 5.88 million Coronavirus Disease 2019 (COVID19) cases and 181,000 COVID-19 related deaths in the United States alone. Given the lack of an effective pharmaceutical treatment for COVID-19, the high contagiousness of the disease and its varied clinical outcomes, identifying patients at risk of progressing to severe disease is crucial for the allocation of valuable healthcare resources during this pandemic. Current research has shown that there is a higher prevalence of cardiovascular comorbidities amongst patients with severe COVID-19 or COVID-19-related deaths, but the link between cardiovascular disease and poorer prognosis is poorly understood. We believe that pre-existing immune dysregulation that accompanies cardiovascular disease predisposes patients to a harmful inflammatory immune response, leading to their higher risk of severe disease. Thus, in this project, we aim to characterize immune dysregulation in patients with cardiomyopathy, venous thromboembolism and COVID-19 patients by looking at immune-associated gene dysregulation, immune infiltration and dysregulated immunological pathways and gene signatures.

5.
Am J Transl Res ; 12(3): 1016-1030, 2020.
Article in English | MEDLINE | ID: mdl-32269731

ABSTRACT

DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is a heritable epigenetic mark, participating in numerous physiological processes. DNMT3A is of particular relevance to hematopoietic differentiation, because DNMT3A mutations are strongly related to hematopoietic malignancies. Additionally, DNMT3A deficiency has been reported to increase the hematopoietic stem cell pool by limiting their differentiation. Our previous study demonstrated that complete loss of DNMT3A resulted in anemia, while DNMT3A haploinsufficiency caused an elevated population of erythrocytes in the content of oncogenic KRAS. Since erythropoiesis is tightly regulated via the erythropoietin (EPO)-mediated RAS-RAF-MEK-ERK1/2 pathway, the question arises whether DNMT3A cooperates with RAS signaling to modulate erythropoiesis. Human leukemia cell lines were used, with differentiation capabilities towards megakaryocyte and erythroid lineages. Overexpression of DNMT3A was found to enhance erythrocytic differentiation of K562 cells, while DNMT3A knockdown suppressed differentiation. Furthermore, higher DNMT3A expression was detected in late-stage mouse erythroblasts along with the DNMT3A translocation to the nucleus. Further studies demonstrated that both ERK1/2-DNMT3A interaction and serine-255 phosphorylation in DNMT3A led to DNMT3A translocation into the nucleus, and modulated erythrocytic differentiation. Our results not only explore the critical role of DNMT3A in erythropoiesis, but also provide a new insight into ERK1/2-DNMT3A interaction in the hematopoietic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...