Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(11): e78371, 2013.
Article in English | MEDLINE | ID: mdl-24244306

ABSTRACT

Recent years have seen an increase in the frequency of extreme rainfall and subsequent flooding across the world. Climate change models predict that such flooding will become more common, triggering sewer overflows, potentially with increased risks to human health. In August 2010, a triathlon sports competition was held in Copenhagen, Denmark, shortly after an extreme rainfall. The authors took advantage of this event to investigate disease risks in two comparable cohorts of physically fit, long distance swimmers competing in the sea next to a large urban area. An established model of bacterial concentration in the water was used to examine the level of pollution in a spatio-temporal manner. Symptoms and exposures among athletes were examined with a questionnaire using a retrospective cohort design and the questionnaire investigation was repeated after a triathlon competition held in non-polluted seawater in 2011. Diagnostic information was collected from microbiological laboratories. The results showed that the 3.8 kilometer open water swimming competition coincided with the peak of post-flooding bacterial contamination in 2010, with average concentrations of 1.5x10(4) E. coli per 100 ml water. The attack rate of disease among 838 swimmers in 2010 was 42% compared to 8% among 931 swimmers in the 2011 competition (relative risk (RR) 5.0; 95% CI: 4.0-6.39). In 2010, illness was associated with having unintentionally swallowed contaminated water (RR 2.5; 95% CI: 1.8-3.4); and the risk increased with the number of mouthfuls of water swallowed. Confirmed aetiologies of infection included Campylobacter, Giardia lamblia and diarrhoeagenic E. coli. The study demonstrated a considerable risk of illness from water intake when swimming in contaminated seawater in 2010, and a small but measureable risk from non-polluted water in 2011. This suggests a significant risk of disease in people ingesting small amounts of flood water following extreme rainfall in urban areas.


Subject(s)
Athletes , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/microbiology , Rain , Swimming , Water Microbiology , Water Pollution/adverse effects , Adult , Denmark/epidemiology , Female , Humans , Male , Retrospective Studies , Risk Factors
2.
Ambio ; 42(4): 464-75, 2013 May.
Article in English | MEDLINE | ID: mdl-23619804

ABSTRACT

In safety assessments of underground radioactive waste repositories, understanding radionuclide fate in ecosystems is necessary to determine the impacts of potential releases. Here, the reliability of two mechanistic models (the compartmental K-model and the 3D dynamic D-model) in describing the fate of radionuclides released into a Baltic Sea bay is tested. Both are based on ecosystem models that simulate the cycling of organic matter (carbon). Radionuclide transfer is linked to adsorption and flows of carbon in food chains. Accumulation of Th-230, Cs-135, and Ni-59 in biological compartments was comparable between the models and site measurements despite differences in temporal resolution, biological state variables, and partition coefficients. Both models provided confidence limits for their modeled concentration ratios, an improvement over models that only estimate means. The D-model enables estimates at high spatio-temporal resolution. The K-model, being coarser but faster, allows estimates centuries ahead. Future developments could integrate the two models to take advantage of their respective strengths.


Subject(s)
Ecosystem , Models, Theoretical , Radioisotopes/chemistry , Water Pollutants, Radioactive/chemistry , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...