Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Epidemiol ; 6: 100128, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38074085

ABSTRACT

Air pollution accountability studies examine the relationship(s) between an intervention, regulation, or event and the resulting downstream impacts, if any, on emissions, exposure, and/or health. The sequence of events has been schematically described as an accountability chain. Here, we update the existing framework to capture real-life complexities and to highlight important factors that fall outside the linear chain. This new "accountability web" is intended to convey the intricacies associated with conducting an accountability study to various audiences, including researchers, policy makers, and stakeholders. We also identify data considerations for planning and completing a robust accountability study, including those relevant to novel and innovative air pollution and exposure data. Finally, we present a series of recommendations for the accountability research community that can serve as a guide for the next generation of accountability studies.

2.
J Pathol ; 211(4): 410-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17278115

ABSTRACT

The glutathione S-transferase P1 (GSTP1) gene promoter is methylated in tumour cells in more than 90% of prostate carcinomas. Recently, GSTP1 promoter methylation was identified in tumour-associated stromal cells in addition to the tumour epithelium. To define the extent and location of stromal methylation, epigenetic mapping using pyrosequencing quantification of GSTP1 promoter methylation and an anatomical three-dimensional reconstruction of an entire human prostate specimen with cancer were performed. Normal epithelium and stroma, tumour epithelium, and tumour-associated stromal cells were laser capture-microdissected from multiple locations throughout the gland. As expected, the GSTP1 promoter in both normal epithelium and normal stromal cells distant from the tumour was not methylated and the tumour epithelium showed consistently high levels of promoter methylation throughout. However, tumour-associated stromal cells were found to be methylated only in a localized and distinct anatomical sub-field of the tumour, revealing the presence of an epigenetically unique microenvironment within the cancer. Morphologically, the sub-field consisted of typical, non-reactive stroma, representing a genomic alteration in cells that appeared otherwise histologically normal. Similar epigenetic anatomical mapping of a control prostate gland without cancer showed low background methylation levels in all cell types throughout the specimen. These data suggest that stromal cell methylation can occur in a distinct sub-region of prostate cancer and may have implications for understanding tumour biology and clinical intervention.


Subject(s)
Epigenesis, Genetic/genetics , Prostatic Neoplasms/genetics , Base Sequence , CpG Islands/genetics , Epithelium/metabolism , Glutathione S-Transferase pi/genetics , Humans , Male , Methylation , Microdissection/methods , Promoter Regions, Genetic/genetics , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/pathology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...