Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37631062

ABSTRACT

Currently, there is no cure for human immunodeficiency virus type 1 (HIV-1) infection. However, combined antiretroviral therapy (cART) aids in viral latency and prevents the progression of HIV-1 infection into acquired immunodeficiency syndrome (AIDS). cART has extended many lives, but people living with HIV-1 (PLWH) face lifelong ailments such as HIV-associated neurocognitive disorders (HAND) that range from asymptomatic HAND to HIV-1-associated dementia. HAND has been attributed to chronic inflammation and low-level infection within the central nervous system (CNS) caused by proinflammatory cytokines and viral products. These molecules are shuttled into the CNS within extracellular vesicles (EVs), lipid bound nanoparticles, and are released from cells as a form of intercellular communication. This study investigates the impact of cannabidiol (CBD), as a promising and potential therapeutic for HAND patients, and a similar synthetic molecule, HU308, on the EVs released from HIV-1-infected myeloid cells as well as HIV-1-infected 3D neurospheres. The data shows that both CBD and HU308 decrease non-coding and coding viral RNA (TAR and env) as well as proinflammatory cytokines as IL-1ß and TNF-α mRNA. This decrease in viral RNA occurs in in vitro differentiated primary macrophages, in EVs released from HIV-1-infected cells monocytes, and infected neurospheres. Furthermore, a 3D neurosphere model shows an overall decrease in proinflammatory mRNA with HU308. Finally, using a humanized mouse model of HIV-1 infection, plasma viral RNA was shown to significantly decrease with HU308 alone and was most effective in combination with cART, even when compared to the typical cART treatment. Overall, CBD or HU308 may be a viable option to decrease EV release and associated cytokines which would dampen the virus spread and may be used in effective treatment of HAND in combination with cART.

3.
J Extracell Vesicles ; 11(7): e12244, 2022 07.
Article in English | MEDLINE | ID: mdl-35879267

ABSTRACT

We characterized the in vivo interstitial fluid (IF) content of extracellular vesicles (EVs) using the GFP-4T1 syngeneic murine cancer model to study EVs in-transit to the draining lymph node. GFP labelling confirmed the IF EV tumour cell origin. Molecular analysis revealed an abundance of IF EV-associated proteins specifically involved in mitophagy and secretory autophagy. A set of proteins required for sequential steps of fission-induced mitophagy preferentially populated the CD81+/PD-L1+ IF EVs; PINK1, TOM20, and ARIH1 E3 ubiquitin ligase (required for Parkin-independent mitophagy), DRP1 and FIS1 (mitochondrial peripheral fission), VDAC-1 (ubiquitination state triggers mitophagy away from apoptosis), VPS35, SEC22b, and Rab33b (vacuolar sorting). Comparing in vivo IF EVs to in vitro EVs revealed 40% concordance, with an elevation of mitophagy proteins in the CD81+ EVs for both murine and human cell lines subjected to metabolic stress. The export of cellular mitochondria proteins to CD81+ EVs was confirmed by density gradient isolation from the bulk EV isolate followed by anti-CD81 immunoprecipitation, molecular sieve chromatography, and MitoTracker export into CD81+ EVs. We propose the 4T1 in vivo model as a versatile tool to functionally characterize IF EVs. IF EV export of fission mitophagy proteins has broad implications for mitochondrial function and cellular immunology.


Subject(s)
Extracellular Vesicles , Neoplasms , Animals , Extracellular Fluid/metabolism , Extracellular Vesicles/metabolism , Humans , Mice , Mitophagy , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Vesicular Transport Proteins
4.
Sci Rep ; 12(1): 2019, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132117

ABSTRACT

HIV-1 remains an incurable infection that is associated with substantial economic and epidemiologic impacts. HIV-associated neurocognitive disorders (HAND) are commonly linked with HIV-1 infection; despite the development of combination antiretroviral therapy (cART), HAND is still reported to affect at least 50% of HIV-1 infected individuals. It is believed that the over-amplification of inflammatory pathways, along with release of toxic viral proteins from infected cells, are primarily responsible for the neurological damage that is observed in HAND; however, the underlying mechanisms are not well-defined. Therefore, there is an unmet need to develop more physiologically relevant and reliable platforms for studying these pathologies. In recent years, neurospheres derived from induced pluripotent stem cells (iPSCs) have been utilized to model the effects of different neurotropic viruses. Here, we report the generation of neurospheres from iPSC-derived neural progenitor cells (NPCs) and we show that these cultures are permissive to retroviral (e.g. HIV-1, HTLV-1) replication. In addition, we also examine the potential effects of stem cell derived extracellular vesicles (EVs) on HIV-1 damaged cells as there is abundant literature supporting the reparative and regenerative properties of stem cell EVs in the context of various CNS pathologies. Consistent with the literature, our data suggests that stem cell EVs may modulate neuroprotective and anti-inflammatory properties in damaged cells. Collectively, this study demonstrates the feasibility of NPC-derived neurospheres for modeling HIV-1 infection and, subsequently, highlights the potential of stem cell EVs for rescuing cellular damage induced by HIV-1 infection.


Subject(s)
Extracellular Vesicles , HIV Infections/pathology , HIV Infections/virology , HIV-1 , Induced Pluripotent Stem Cells/virology , Neural Stem Cells/virology , Cells, Cultured , Extracellular Vesicles/physiology , HIV Infections/complications , HIV-1/physiology , Humans , Neurocognitive Disorders/etiology , Neuroprotection , Virus Replication
5.
Cells ; 10(4)2021 04 01.
Article in English | MEDLINE | ID: mdl-33916140

ABSTRACT

Here, we have attempted to address the timing of EV and virion release from virally infected cells. Uninfected (CEM), HIV-1-infected (J1.1), and human T cell leukemia virus-1 (HTLV-1)-infected (HUT102) cells were synchronized in G0. Viral latency was reversed by increasing gene expression with the addition of serum-rich media and inducers. Supernatants and cell pellets were collected post-induction at different timepoints and assayed for extracellular vesicle (EV) and autophagy markers; and for viral proteins and RNAs. Tetraspanins and autophagy-related proteins were found to be differentially secreted in HIV-1- and HTLV-1-infected cells when compared with uninfected controls. HIV-1 proteins were present at 6 h and their production increased up to 24 h. HTLV-1 proteins peaked at 6 h and plateaued. HIV-1 and HTLV-1 RNA production correlated with viral protein expression. Nanoparticle tracking analysis (NTA) showed increase of EV concentration over time in both uninfected and infected samples. Finally, the HIV-1 supernatant from the 6-h samples was found not to be infectious; however, the virus from the 24-h samples was successfully rescued and infectious. Overall, our data indicate that EV release may occur prior to viral release from infected cells, thereby implicating a potentially significant effect of EVs on uninfected recipient cells prior to subsequent viral infection and spread.


Subject(s)
Extracellular Vesicles/metabolism , HIV Infections/metabolism , HIV Infections/pathology , HTLV-I Infections/metabolism , HTLV-I Infections/pathology , Virion/metabolism , Apoptosis , Biomarkers/metabolism , Cell Line , Culture Media, Conditioned , Cytokines/metabolism , HIV-1/physiology , Human T-lymphotropic virus 1/physiology , Humans , Models, Biological , Myeloid Cells/metabolism , RNA, Viral/metabolism , T-Lymphocytes/metabolism
6.
Retrovirology ; 18(1): 6, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33622348

ABSTRACT

BACKGROUND: The Human T-cell Lymphotropic Virus Type-1 (HTLV-1) is a blood-borne pathogen and etiological agent of Adult T-cell Leukemia/Lymphoma (ATLL) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 has currently infected up to 10 million globally with highly endemic areas in Japan, Africa, the Caribbean and South America. We have previously shown that Extracellular Vesicles (EVs) enhance HTLV-1 transmission by promoting cell-cell contact. RESULTS: Here, we separated EVs into subpopulations using differential ultracentrifugation (DUC) at speeds of 2 k (2000×g), 10 k (10,000×g), and 100 k (100,000×g) from infected cell supernatants. Proteomic analysis revealed that EVs contain the highest viral/host protein abundance in the 2 k subpopulation (2 k > 10 k > 100 k). The 2 k and 10 k populations contained viral proteins (i.e., p19 and Tax), and autophagy proteins (i.e., LC3 and p62) suggesting presence of autophagosomes as well as core histones. Interestingly, the use of 2 k EVs in an angiogenesis assay (mesenchymal stem cells + endothelial cells) caused deterioration of vascular-like-tubules. Cells commonly associated with the neurovascular unit (i.e., astrocytes, neurons, and macrophages) in the blood-brain barrier (BBB) showed that HTLV-1 EVs may induce expression of cytokines involved in migration (i.e., IL-8; 100 k > 2 k > 10 k) from astrocytes and monocyte-derived macrophages (i.e., IL-8; 2 k > 10 k). Finally, we found that EVs were able to promote cell-cell contact and viral transmission in monocytic cell-derived dendritic cell. The EVs from both 2 k and 10 k increased HTLV-1 spread in a humanized mouse model, as evidenced by an increase in proviral DNA and RNA in the Blood, Lymph Node, and Spleen. CONCLUSIONS: Altogether, these data suggest that various EV subpopulations induce cytokine expression, tissue damage, and viral spread.


Subject(s)
Endothelial Cells/virology , Extracellular Vesicles/virology , Human T-lymphotropic virus 1/physiology , Animals , Cell Communication , Cytokines/analysis , Cytokines/genetics , Cytokines/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/physiology , Female , HTLV-I Infections/virology , Humans , Mice , Mice, Inbred NOD , Mice, Transgenic , Proteomics , THP-1 Cells , U937 Cells
7.
Viruses ; 12(6)2020 06 19.
Article in English | MEDLINE | ID: mdl-32575590

ABSTRACT

HIV-1 is a global health crisis that has infected more than 37 million people. Latent reservoirs throughout the body are a major hurdle when it comes to eradicating the virus. In our previous study, we found that exosomes, a type of extracellular vesicle (EV), from uninfected cells activate the transcription of HIV-1 in latent infected cells, regardless of combination antiretroviral therapy (cART). In this study, we investigated the specific mechanism behind the EV activation of latent HIV-1. We found that phosphorylated c-Src is present in EVs of various cell lines and has the ability to activate downstream proteins such as EGFR, initiating a signal cascade. EGFR is then able to activate the PI3K/AKT/mTOR pathway, resulting in the activation of STAT3 and SRC-1, culminating in the reversal of HIV-1 latency. This was verified by examining levels of HIV-1 TAR, genomic RNA and HIV-1 Gag p24 protein in cell lines and primary cells. We found that EVs containing c-Src rescued HIV-1 despite the presence of inhibitors, validating the importance of EV-associated c-Src in latent HIV-1 activation. Lastly, we discovered an increased recruitment of p300 and NF-κB in the nucleus of EV-treated infected cells. Collectively, our data suggest that EV-associated c-Src is able to activate latent HIV-1 via the PI3K/AKT/mTOR pathway and SRC-1/p300-driven chromatin remodeling. These findings could aid in designing new strategies to prevent the reactivation of latent HIV-1 in patients under cART.


Subject(s)
Exosomes/metabolism , HIV-1/growth & development , Proto-Oncogene Proteins pp60(c-src)/metabolism , Virus Activation/physiology , Virus Latency/physiology , Cell Line, Tumor , E1A-Associated p300 Protein/metabolism , ErbB Receptors/metabolism , Extracellular Vesicles/metabolism , HIV Core Protein p24/metabolism , HIV Infections , Humans , Jurkat Cells , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic/genetics , Transcriptional Activation/genetics , U937 Cells
8.
G3 (Bethesda) ; 10(7): 2487-2496, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32457096

ABSTRACT

Runx proteins are bifunctional transcription factors that both repress and activate transcription in animal cells. Typically, Runx proteins work in concert with other transcriptional regulators, including co-activators and co-repressors to mediate their biological effects. In Drosophila melanogaster the archetypal Runx protein, Runt, functions in numerous processes including segmentation, neurogenesis and sex determination. During primary sex determination Runt acts as one of four X-linked signal element (XSE) proteins that direct female-specific activation of the establishment promoter (Pe) of the master regulatory gene Sex-lethal (Sxl). Successful activation of SxlPe requires that the XSE proteins overcome the repressive effects of maternally deposited Groucho (Gro), a potent co-repressor of the Gro/TLE family. Runx proteins, including Runt, contain a C-terminal peptide, VWRPY, known to bind to Gro/TLE proteins to mediate transcriptional repression. We show that Runt's VWRPY co-repressor-interaction domain is needed for Runt to activate SxlPe Deletion of the Gro-interaction domain eliminates Runt-ability to activate SxlPe, whereas replacement with a higher affinity, VWRPW, sequence promotes Runt-mediated transcription. This suggests that Runt may activate SxlPe by antagonizing Gro function, a conclusion consistent with earlier findings that Runt is needed for Sxl expression only in embryonic regions with high Gro activity. Surprisingly we found that Runt is not required for the initial activation of SxlPe Instead, Runt is needed to keep SxlPe active during the subsequent period of high-level Sxl transcription suggesting that Runt helps amplify the difference between female and male XSE signals by counter-repressing Gro in female, but not in male, embryos.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation, Developmental , Male , Promoter Regions, Genetic , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Sci Rep ; 10(1): 2227, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042107

ABSTRACT

HIV-1 viral transcription persists in patients despite antiretroviral treatment, potentially due to intermittent HIV-1 LTR activation. While several mathematical models have been explored in the context of LTR-protein interactions, in this work for the first time HIV-1 LTR model featuring repressed, intermediate, and activated LTR states is integrated with generation of long (env) and short (TAR) RNAs and proteins (Tat, Pr55, and p24) in T-cells and macrophages using both cell lines and infected primary cells. This type of extended modeling framework allows us to compare and contrast behavior of these two cell types. We demonstrate that they exhibit unique LTR dynamics, which ultimately results in differences in the magnitude of viral products generated. One of the distinctive features of this work is that it relies on experimental data in reaction rate computations. Two RNA transcription rates from the activated promoter states are fit by comparison of experimental data to model predictions. Fitting to the data also provides estimates for the degradation/exit rates for long and short viral RNA. Our experimentally generated data is in reasonable agreement for the T-cell as well macrophage population and gives strong evidence in support of using the proposed integrated modeling paradigm. Sensitivity analysis performed using Latin hypercube sampling method confirms robustness of the model with respect to small parameter perturbations. Finally, incorporation of a transcription inhibitor (F07#13) into the governing equations demonstrates how the model can be used to assess drug efficacy. Collectively, our model indicates transcriptional differences between latently HIV-1 infected T-cells and macrophages and provides a novel platform to study various transcriptional dynamics leading to latency or activation in numerous cell types and physiological conditions.


Subject(s)
Anti-HIV Agents/pharmacology , Gene Expression Regulation, Viral/immunology , HIV Infections/drug therapy , HIV-1/genetics , Macrophages/immunology , T-Lymphocytes/immunology , Anti-HIV Agents/therapeutic use , Cell Line , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Drug Resistance, Viral/immunology , HIV Infections/blood , HIV Infections/immunology , HIV Long Terminal Repeat/genetics , HIV-1/drug effects , HIV-1/immunology , Humans , Macrophages/virology , Models, Genetic , Models, Immunological , Primary Cell Culture , RNA, Viral/genetics , RNA, Viral/metabolism , T-Lymphocytes/virology , Transcription, Genetic/drug effects , Transcription, Genetic/immunology , Virus Replication/drug effects , Virus Replication/genetics , Virus Replication/immunology
10.
Sci Rep ; 9(1): 8847, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222094

ABSTRACT

Maternally-transmitted endosymbiotic bacteria are ubiquitous in insects. Among other influential phenotypes, many heritable symbionts of arthropods are notorious for manipulating host reproduction through one of four reproductive syndromes, which are generally exerted during early developmental stages of the host: male feminization; parthenogenesis induction; male killing; and cytoplasmic incompatibility (CI). Major advances have been achieved in understanding mechanisms and identifying symbiont factors involved in reproductive manipulation, particularly male killing and cytoplasmic incompatibility. Nonetheless, whether cytoplasmically-transmitted bacteria influence the maternally-loaded components of the egg or early embryo has not been examined. In the present study, we investigated whether heritable endosymbionts that cause different reproductive phenotypes in Drosophila melanogaster influence the mRNA transcriptome of early embryos. We used mRNA-seq to evaluate differential expression in Drosophila embryos lacking endosymbionts (control) to those harbouring the male-killing Spiroplasma poulsonii strain MSRO-Br, the CI-inducing Wolbachia strain wMel, or Spiroplasma poulsonii strain Hyd1; a strain that lacks a reproductive phenotype and is naturally associated with Drosophila hydei. We found no consistent evidence of influence of symbiont on mRNA composition of early embryos, suggesting that the reproductive manipulation mechanism does not involve alteration of maternally-loaded transcripts. In addition, we capitalized on several available mRNA-seq datasets derived from Spiroplasma-infected Drosophila melanogaster embryos, to search for signals of depurination of rRNA, consistent with the activity of Ribosome Inactivating Proteins (RIPs) encoded by Spiroplasma poulsonii. We found small but statistically significant signals of depurination of Drosophila rRNA in the Spiroplasma treatments (both strains), but not in the symbiont-free control or Wolbachia treatment, consistent with the action of RIPs. The depurination signal was slightly stronger in the treatment with the male-killing strain. This result supports a recent report that RIP-induced damage contributes to male embryo death.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/microbiology , Embryo, Nonmammalian/microbiology , Symbiosis , Transcriptome/genetics , Animals , Drosophila melanogaster/genetics , Female , Genes, Insect/genetics , Host-Pathogen Interactions/genetics , Male , Phenotype , RNA, Ribosomal , Reproduction/genetics , Ribosome Inactivating Proteins/genetics , Ribosome Inactivating Proteins/physiology , Sequence Analysis, RNA , Spiroplasma/enzymology , Wolbachia
11.
Retrovirology ; 16(1): 13, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036006

ABSTRACT

BACKGROUND: HIV-1 patients receiving combination antiretroviral therapy (cART) survive infection but require life-long adherence at high expense. In chronic cART-treated patients with undetectable viral titers, cell-associated viral RNA is still detectable, pointing to low-level viral transcriptional leakiness. To date, there are no FDA-approved drugs against HIV-1 transcription. We have previously shown that F07#13, a third generation Tat peptide mimetic with competitive activity against Cdk9/T1-Tat binding sites, inhibits HIV-1 transcription in vitro and in vivo. RESULTS: Here, we demonstrate that increasing concentrations of F07#13 (0.01, 0.1, 1 µM) cause a decrease in Tat levels in a dose-dependent manner by inhibiting the Cdk9/T1-Tat complex formation and subsequent ubiquitin-mediated Tat sequestration and degradation. Our data indicate that complexes I and IV contain distinct patterns of ubiquitinated Tat and that transcriptional inhibition induced by F07#13 causes an overall reduction in Tat levels. This reduction may be triggered by F07#13 but ultimately is mediated by TAR-gag viral RNAs that bind suppressive transcription factors (similar to 7SK, NRON, HOTAIR, and Xist lncRNAs) to enhance transcriptional gene silencing and latency. These RNAs complex with PRC2, Sin3A, and Cul4B, resulting in epigenetic modifications. Finally, we observed an F07#13-mediated decrease of viral burden by targeting the R region of the long terminal repeat (HIV-1 promoter region, LTR), promoting both paused polymerases and increased efficiency of CRISPR/Cas9 editing in infected cells. This implies that gene editing may be best performed under a repressed transcriptional state. CONCLUSIONS: Collectively, our results indicate that F07#13, which can terminate RNA Polymerase II at distinct sites, can generate scaffold RNAs, which may assemble into specific sets of "RNA Machines" that contribute to gene regulation. It remains to be seen whether these effects can also be seen in various clades that have varying promoter strength, mutant LTRs, and in patient samples.


Subject(s)
Gene Expression Regulation, Viral/drug effects , HIV-1/genetics , RNA, Untranslated/genetics , Transcription, Genetic , Anti-Retroviral Agents/pharmacology , Biomimetics , CRISPR-Cas Systems , Cell Line , Gene Editing , Gene Silencing , HIV-1/drug effects , Humans , Promoter Regions, Genetic , RNA, Viral/genetics , tat Gene Products, Human Immunodeficiency Virus/chemistry
13.
J Infect Dis ; 218(suppl_5): S365-S387, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30169850

ABSTRACT

Background: Ebola virus (EBOV) mainly targets myeloid cells; however, extensive death of T cells is often observed in lethal infections. We have previously shown that EBOV VP40 in exosomes causes recipient immune cell death. Methods: Using VP40-producing clones, we analyzed donor cell cycle, extracellular vesicle (EV) biogenesis, and recipient immune cell death. Transcription of cyclin D1 and nuclear localization of VP40 were examined via kinase and chromatin immunoprecipitation assays. Extracellular vesicle contents were characterized by mass spectrometry, cytokine array, and western blot. Biosafety level-4 facilities were used for wild-type Ebola virus infection studies. Results: VP40 EVs induced apoptosis in recipient T cells and monocytes. VP40 clones were accelerated in growth due to cyclin D1 upregulation, and nuclear VP40 was found bound to the cyclin D1 promoter. Accelerated cell cycling was related to EV biogenesis, resulting in fewer but larger EVs. VP40 EV contents were enriched in ribonucleic acid-binding proteins and cytokines (interleukin-15, transforming growth factor-ß1, and interferon-γ). Finally, EBOV-infected cell and animal EVs contained VP40, nucleoprotein, and glycoprotein. Conclusions: Nuclear VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Packaging of cytokines and EBOV proteins into EVs from infected cells may be responsible for the decimation of immune cells during EBOV pathogenesis.


Subject(s)
Cell Cycle/physiology , Ebolavirus/metabolism , Extracellular Vesicles/metabolism , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Nucleoproteins/metabolism , Viral Core Proteins/metabolism , Apoptosis/physiology , Cell Line , Cell Line, Tumor , Cyclin D1/metabolism , Exosomes/metabolism , Extracellular Vesicles/virology , Glycoproteins/metabolism , HEK293 Cells , Humans , Promoter Regions, Genetic/physiology , Protein Binding/physiology , U937 Cells , Up-Regulation/physiology , Viral Matrix Proteins/metabolism
14.
Clin Transl Med ; 7(1): 24, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30146667

ABSTRACT

BACKGROUND: HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types. It is now understood that several viruses take advantage of this mode of intercellular communication for packaging of viral components as well. We sought to understand if this is the case in HTLV-1 infection, and specifically if HTLV-1 proteins can be found in the CSF of HAM/TSP patients where we know free virus is absent, and furthermore, if exosomes containing HTLV-1 Tax have functional consequences. RESULTS: Exosomes that were positive for HTLV-1 Tax by Western blot were isolated from HAM/TSP patient PBMCs (25/36) in ex vivo cultures by trapping exosomes from culture supernatants. HTLV-1 seronegative PBMCs did not have exosomes with Tax (0/12), (Fisher exact test, p = 0.0001). We were able to observe HAM/TSP patient CSF (12/20) containing Tax+ exosomes but not in HTLV-1 seronegative MS donors (0/5), despite the absence of viral detection in the CSF supernatant (Fisher exact test p = 0.0391). Furthermore, exosomes cultivated from HAM/TSP PBMCs were capable of sensitizing target cells for HTLV-1 specific CTL lysis. CONCLUSION: Cumulatively, these results show that there are HTLV-1 proteins present in exosomes found in virus-free CSF. HAM/TSP PBMCs, particularly CD4+CD25+ T cells, can excrete these exosomes containing HTLV-1 Tax and may be a source of the exosomes found in patient CSF. Importantly, these exosomes are capable of sensitizing an HTLV-1 specific immune response, suggesting that they may play a role in the immunopathology observed in HAM/TSP. Given the infiltration of HTLV-1 Tax-specific CTLs into the CNS of HAM/TSP patients, it is likely that exosomes may also contribute to the continuous activation and inflammation observed in HAM/TSP, and may suggest future targeted therapies in this disorder.

15.
Sci Rep ; 8(1): 7653, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769566

ABSTRACT

To date, the most effective treatment of HIV-1 is a combination antiretroviral therapy (cART), which reduces viral replication and reverses pathology. We investigated the effect of cART (RT and protease inhibitors) on the content of extracellular vesicles (EVs) released from HIV-1-infected cells. We have previously shown that EVs contain non-coding HIV-1 RNA, which can elicit responses in recipient cells. In this manuscript, we show that TAR RNA levels demonstrate little change with the addition of cART treatment in cell lines, primary macrophages, and patient biofluids. We determined possible mechanisms involved in the selective packaging of HIV-1 RNA into EVs, specifically an increase in EV-associated hnRNP A2/B1. More recent experiments have shown that several other FDA-approved drugs have the ability to alter the content of exosomes released from HIV-1-infected cells. These findings on cART-altered EV content can also be applied to general viral inhibitors (interferons) which are used to treat other chronic infections. Additionally, we describe unique mechanisms of ESCRT pathway manipulation by antivirals, specifically the targeting of VPS4. Collectively, these data imply that, despite antiretroviral therapy, EVs containing viral products are continually released and may cause neurocognitive and immunological dysfunction.


Subject(s)
Anti-Retroviral Agents/pharmacology , Extracellular Vesicles/metabolism , HIV Infections/metabolism , HIV-1/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Adult , Cohort Studies , Extracellular Vesicles/drug effects , Female , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/pathogenicity , Humans , Male , RNA, Viral/genetics , Virus Replication , Young Adult , tat Gene Products, Human Immunodeficiency Virus/genetics
16.
J Prev Med Public Health ; 50(1): 10-17, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28173688

ABSTRACT

OBJECTIVES: The purpose of this study was to examine the relationship of meeting the recommended levels of physical activity (PA) with health status and preventive health behavior in adults. METHODS: A total of 5630 adults 18 years of age or older were included in this study. PA was assessed using a series of questions that categorized activities based on their metabolic equivalent values and then categorized individuals based on the reported frequency and duration of such activities. Participants reporting 150 minutes or more of moderate-intensity PA per week were considered to have met the PA guidelines. Multiple logistic regression was used to model the relationships between meeting PA guidelines and health status and preventive health behavior, while controlling for confounding variables. RESULTS: Overall, 53.9% (95% confidence interval [CI], 51.9 to 55.9%) of adults reported meeting the recommended levels of PA. Among adults with good general health, 56.9% (95% CI, 54.7 to 59.1%) reported meeting the recommended levels of PA versus 43.1% (95% CI, 40.9 to 45.3%) who did not. Adults who met the PA guidelines were significantly more likely not to report high cholesterol, diabetes, chronic obstructive pulmonary disease, arthritis, asthma, depression, or overweight. Furthermore, adults meeting the PA guidelines were significantly more likely to report having health insurance, consuming fruits daily, consuming vegetables daily, and not being a current cigarette smoker. CONCLUSIONS: In this study, we found meeting the current guidelines for PA to have a protective relationship with both health status and health behavior in adults. Health promotion programs should focus on strategies that help individuals meet the current guidelines of at least 150 minutes per week of moderate-intensity PA.


Subject(s)
Health Status , Preventive Health Services , Adolescent , Adult , Aged , Exercise , Female , Health Behavior , Health Promotion , Humans , Male , Middle Aged , Oxygen Consumption , Quality of Life , Young Adult
17.
Radiol Case Rep ; 11(4): 444-446, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27920877

ABSTRACT

Failure of duodenal recanalization results in a spectrum of proximal bowel obstruction from stenosis to atresia. Associations between congenital duodenal obstruction and other congenital anomalies have been well documented although the coincidence of duodenal stenosis and duodenal web is incredibly rare, posing a unique diagnostic challenge. We report a case of a full-term 4-day-old female child presented with forceful, bilious emesis and poor oral intake with decreased frequency of urination, and stooling whose initial abdominal radiograph showed several loops of gas-filled bowel in the distal stomach and proximal duodenum mimicking the classic "double-bubble" sign. An upper gastrointestinal barium contrast study revealed distention of the duodenal bulb with an abrupt narrowing and subsequent dilation at the second portion of the duodenum raising the suggestion of multiple duodenal obstructions. Ladd's procedure was performed, and the stenotic and webbed segments were bypassed with a Kimura diamond-shaped duodenoduodenostomy.

18.
Genetics ; 202(2): 541-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26614741

ABSTRACT

It has been proposed that the Male Specific Lethal (MSL) complex is active in Drosophila melanogaster embryos of both sexes prior to the maternal-to-zygotic transition. Elevated gene expression from the two X chromosomes of female embryos is proposed to facilitate the stable establishment of Sex-lethal (Sxl) expression, which determines sex and represses further activity of the MSL complex, leaving it active only in males. Important supporting data included female-lethal genetic interactions between the seven msl genes and either Sxl or scute and sisterlessA, two of the X-signal elements (XSE) that regulate early Sxl expression. Here I report contrary findings that there are no female-lethal genetic interactions between the msl genes and Sxl or its XSE regulators. Fly stocks containing the msl3(1) allele were found to exhibit a maternal-effect interaction with Sxl, scute, and sisterlessA mutations, but genetic complementation experiments showed that msl3 is neither necessary nor sufficient for the female-lethal interactions, which appear to be due to an unidentified maternal regulator of Sxl. Published data cited as evidence for an early function of the MSL complex in females, including a maternal effect of msl2, have been reevaluated and found not to support a maternal, or other effect, of the MSL complex in sex determination. These findings suggest that the MSL complex is not involved in primary sex determination or in X chromosome dosage compensation prior to the maternal-to-zygotic transition.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genes, Lethal , Sex Determination Processes/genetics , Animals , Dosage Compensation, Genetic , Drosophila Proteins/metabolism , Female , Genotype , Male , Mutation , Protein Binding , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sex Chromosomes
19.
Fly (Austin) ; 4(1): 60-70, 2010.
Article in English | MEDLINE | ID: mdl-20160499

ABSTRACT

One of the most important decisions in development is whether to be male or female. In Drosophila melanogaster, most cells make this choice independent of their neighbors such that diploid cells with one X chromosome (XY) are male and those with two X chromosomes (XX) are female. X-chromosome number is relayed through regulatory proteins that act together to activate Sex-lethal (Sxl) in XX animals. The resulting SXL female specific RNA binding protein modulates the expression of a set of downstream genes, ultimately leading to sexually dimorphic structures and behaviors. Despite the apparent simplicity of this mechanism, Sxl activity is controlled by a host of transcriptional and posttranscriptional mechanisms that tailor its function to specific developmental scenarios. This review describes recent advances in our understanding of Sxl regulation and function, highlighting work that challenges some of the textbook views about this classical (often cited, yet poorly understood) binary switch gene.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , RNA-Binding Proteins/genetics , Sex Determination Processes , Alternative Splicing , Animals , Biological Evolution , Drosophila/embryology , Drosophila Proteins/metabolism , Embryonic Development , Female , Germ Cells , Homeostasis , Male , Polyadenylation , Promoter Regions, Genetic , RNA-Binding Proteins/metabolism , Transcriptional Activation , X Chromosome
20.
Proc Natl Acad Sci U S A ; 105(47): 18436-41, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-19011108

ABSTRACT

Sex-lethal (Sxl), the master regulatory gene of Drosophila somatic sex determination, is stably maintained in an on or an off state by autoregulatory control of Sxl premRNA processing. Establishment of the correct Sxl splicing pattern requires the coordinate regulation of two Sxl promoters. The first of these promoters, SxlPe, responds to the female dose of two X chromosomes to produce a pulse of Sxl protein that acts on the premRNA products from the second promoter, SxlPm, to establish the splicing loop. SxlPm is active in both sexes throughout most of development, but nothing is known about how SxlPm is expressed during the transition from X signal assessment to maintenance splicing. We found that SxlPm is activated earlier in females than in males in a range of Drosophila species, and that its expression overlaps briefly with that of SxlPe during the syncytial blastoderm stage. Activation of SxlPm depends on the scute, daughterless, and runt transcription factors, which communicate X chromosome dose to SxlPe, but is independent of the X signal element sisA and the maternal co-repressor groucho. We show that DNA sequences regulating the response of SxlPe to the X chromosome dose also control the sex-differential response of SxlPm. We propose that co-expression of Sxl protein and its premRNA substrate facilitates the transition from transcriptional to splicing control, and that delayed activation of SxlPm in males buffers against the inappropriate activation of Sxl by fluctuations in the strength of the X chromosome signal.


Subject(s)
Drosophila/genetics , Enhancer Elements, Genetic , Promoter Regions, Genetic , Sex Determination Processes , Animals , Drosophila Proteins/genetics , Female , Male , RNA Splicing , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , X Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...