Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Phys Chem Chem Phys ; 24(23): 14525-14537, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35661842

ABSTRACT

Methods which accurately predict protein-ligand binding strengths are critical for drug discovery. In the last two decades, advances in chemical modelling have enabled steadily accelerating progress in the discovery and optimization of structure-based drug design. Most computational methods currently used in this context are based on molecular mechanics force fields that often have deficiencies in describing the quantum mechanical (QM) aspects of molecular binding. In this study, we show the competitiveness of our QM-based Molecules-in-Molecules (MIM) fragmentation method for characterizing binding energy trends for seven different datasets of protein-ligand complexes. By using molecular fragmentation, the MIM method allows for accelerated QM calculations. We demonstrate that for classes of structurally similar ligands bound to a common receptor, MIM provides excellent correlation to experiment, surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. The MIM method offers a relatively simple, well-defined protocol by which binding trends can be ascertained at the QM level and is suggested as a promising option for lead optimization in structure-based drug design.


Subject(s)
Molecular Dynamics Simulation , Proteins , Drug Design , Ligands , Protein Binding , Proteins/chemistry , Quantum Theory , Thermodynamics
2.
Cancer Lett ; 517: 66-77, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34111513

ABSTRACT

Mutations in KRAS frequently occur in human cancer and are especially prevalent in pancreatic ductal adenocarcinoma (PDAC), where they have been shown to promote aggressive phenotypes. However, targeting this onco-protein has proven to be challenging, highlighting the need to further identify the various mechanisms used by KRAS to drive cancer progression. Here, we considered the role played by exosomes, a specific class of extracellular vesicles (EVs) derived from the endocytic cellular trafficking machinery, in mediating the ability of KRAS to promote cell survival. We found that exosomes isolated from the serum of PDAC patients, as well as from KRAS-transformed fibroblasts and pancreatic cancer cells, were all highly enriched in the cell survival protein Survivin. Exosomes containing Survivin, upon engaging serum-starved cells, strongly enhanced their survival. Moreover, they significantly compromised the effectiveness of the conventional chemotherapy drug paclitaxel, as well as a novel therapy that combines an ERK inhibitor with chloroquine, which is currently in clinical trials for PDAC. The survival benefits provided by oncogenic KRAS-derived exosomes were markedly reduced when depleted of Survivin using siRNA or upon treatment with the Survivin inhibitor YM155. Taken together, these findings demonstrate how KRAS mutations give rise to exosomes that provide a unique form of intercellular communication to promote cancer cell survival and therapy resistance, as well as raise interesting possibilities regarding their potential for serving as therapeutic targets and diagnostic markers for KRAS-dependent cancers.


Subject(s)
Exosomes/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Survivin/genetics , Cell Communication/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Chloroquine/pharmacology , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Fibroblasts/drug effects , Humans , Imidazoles/pharmacology , Mutation/genetics , Naphthoquinones/pharmacology , Paclitaxel/pharmacology , Pancreas/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics
3.
J Med Chem ; 64(12): 8076-8100, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34081466

ABSTRACT

The beta-site APP cleaving enzyme 1, known as BACE1, has been a widely pursued Alzheimer's disease drug target owing to its critical role in the production of amyloid-beta. We have previously reported the clinical development of LY2811376 and LY2886721. LY2811376 advanced to Phase I before development was terminated due to nonclinical retinal toxicity. LY2886721 advanced to Phase II, but development was halted due to abnormally elevated liver enzymes. Herein, we report the discovery and clinical development of LY3202626, a highly potent, CNS-penetrant, and low-dose BACE inhibitor, which successfully addressed these key development challenges.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Heterocyclic Compounds, 2-Ring/pharmacology , Protease Inhibitors/pharmacology , Pyrazines/pharmacology , Pyrroles/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Blood-Brain Barrier/physiology , Brain/metabolism , Crystallography, X-Ray , Dogs , Drug Stability , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacokinetics , Protein Binding , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Rats , Structure-Activity Relationship
4.
J Med Chem ; 64(9): 5787-5801, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33872011

ABSTRACT

The use of epigenetic bromodomain inhibitors as anticancer therapeutics has transitioned from targeting bromodomain extraterminal domain (BET) proteins into targeting non-BET bromodomains. The two most relevant non-BET bromodomain oncology targets are cyclic AMP response element-binding protein (CBP) and E1A binding protein P300 (EP300). To explore the growing CBP/EP300 interest, we developed a highly efficient two-step synthetic route for dimethylisoxazole-attached imidazo[1,2-a]pyridine scaffold-containing inhibitors. Our efficient two-step reactions enabled high-throughput synthesis of compounds designed by molecular modeling, which together with structure-activity relationship (SAR) studies facilitated an overarching understanding of selective targeting of CBP/EP300 over non-BET bromodomains. This led to the identification of a new potent and selective CBP/EP300 bromodomain inhibitor, UMB298 (compound 23, CBP IC50 72 nM and bromodomain 4, BRD4 IC50 5193 nM). The SAR we established is in good agreement with literature-reported CBP inhibitors, such as CBP30, and demonstrates the advantage of utilizing our two-step approach for inhibitor development of other bromodomains.


Subject(s)
Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Isoxazoles/chemistry , Pyridines/chemistry , Binding Sites , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Cyclic AMP Response Element-Binding Protein/metabolism , E1A-Associated p300 Protein/metabolism , Humans , Molecular Docking Simulation , Pyridines/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
5.
J Chem Inf Model ; 60(6): 2924-2938, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32407081

ABSTRACT

The concept of activity cliff (AC) (i.e., a small structural modification resulting in a substantial bioactivity change) is widely encountered in medicinal chemistry during compound design. Whereas the study of ACs is of high interest as it provides a wealth of opportunities for effective drug design, its practical application in the actual drug development process has been difficult because of significant computational challenges. To provide some understanding of the ACs, we have carried out a rigorous quantum-mechanical investigation of the electronic interactions of a wide range of ACs (205 cliffs formed by 261 protein-ligand complexes covering 37 different receptor types) using multilayer molecules-in-molecules (MIM) fragmentation-based methodology. The MIM methodology enables performing accurate high-level quantum mechanical (QM) calculations at a substantially lower computational cost, while allowing for a quantitative decomposition of the protein-ligand binding energy into the contributions from individual residues, solvation, and entropy. Our investigation in this study is mainly focused on whether the QM binding energy calculation can correctly identify the higher potency cliff partner for a given ligand pair having a sufficiently high activity difference. We have also analyzed the effect of including crystal water molecules as a part of the receptor as well as the impact of ligand desolvation energy on the correct identification of the more potent ligand in a cliff pair. Our analysis reveals that, in the majority of the cases, the AC prediction could be significantly improved by carefully identifying the critical crystal water molecules, whereas the contribution from the ligand desolvation also remains essential. Additionally, we have exploited the residue-specific interaction energies provided by MIM to identify the key residues and interaction hot-spots that are responsible for the experimentally observed drastic activity changes. The results show that our MIM fragmentation-based protocol provides comprehensive interaction energy profiles that can be employed to understand the distinctiveness of ligand modifications, for potential applications in structure-based drug design.


Subject(s)
Drug Design , Proteins , Chemistry, Pharmaceutical , Ligands , Protein Binding , Proteins/metabolism , Quantum Theory
6.
Bioorg Med Chem ; 28(1): 115194, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31786008

ABSTRACT

Inhibition of BACE1 has become an important strategy in the quest for disease modifying agents to slow the progression of Alzheimer's disease. We previously reported the fragment-based discovery of LY2811376, the first BACE1 inhibitor reported to demonstrate robust reduction of human CSF Aß in a Phase I clinical trial. We also reported on the discovery of LY2886721, a potent BACE1 inhibitor that reached phase 2 clinical trials. Herein we describe the preparation and structure activity relationships (SAR) of a series of BACE1 inhibitors utilizing trans-cyclopropyl moieties as conformational constraints. The design, details of the stereochemically complex organic synthesis, and biological activity of these BACE1 inhibitors is described.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cyclopropanes/pharmacology , Protease Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Crystallography, X-Ray , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
7.
J Biol Chem ; 295(5): 1328-1337, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31871054

ABSTRACT

The glutaminase C (GAC) isoform of mitochondrial glutaminase is overexpressed in many cancer cells and therefore represents a potential therapeutic target. Understanding the regulation of GAC activity has been guided by the development of spectroscopic approaches that measure glutaminase activity in real time. Previously, we engineered a GAC protein (GAC(F327W)) in which a tryptophan residue is substituted for phenylalanine in an activation loop to explore the role of this loop in enzyme activity. We showed that the fluorescence emission of Trp-327 is enhanced in response to activator binding, but quenched by inhibitors of the BPTES class that bind to the GAC tetramer and contact the activation loop, thereby constraining it in an inactive conformation. In the present work, we took advantage of a tryptophan substitution at position 471, proximal to the GAC catalytic site, to examine the conformational coupling between the activation loop and the substrate-binding cleft, separated by ∼16 Å. Comparison of glutamine binding in the presence or absence of the BPTES analog CB-839 revealed a reciprocal relationship between the constraints imposed on the activation loop position and the affinity of GAC for substrate. Binding of the inhibitor weakened the affinity of GAC for glutamine, whereas activating anions such as Pi increased this affinity. These results indicate that the conformations of the activation loop and the substrate-binding cleft in GAC are allosterically coupled and that this coupling determines substrate affinity and enzymatic activity and explains the activities of CB-839, which is currently in clinical trials.


Subject(s)
Benzeneacetamides/pharmacology , Glutaminase/chemistry , Glutamine/metabolism , Mitochondria/enzymology , Thiadiazoles/pharmacology , Allosteric Regulation/genetics , Allosteric Site/genetics , Amino Acid Substitution/genetics , Animals , Biomedical Engineering , Catalytic Domain/genetics , Glutaminase/metabolism , Kinetics , Mice , Mitochondria/chemistry , Models, Molecular , Mutation , Protein Isoforms , Protein Structure, Tertiary/genetics , Recombinant Proteins , Sulfides/pharmacology
8.
Proc Natl Acad Sci U S A ; 116(52): 26625-26632, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843902

ABSTRACT

The mitochondrial enzyme glutaminase (GLS) is frequently up-regulated during tumorigenesis and is being evaluated as a target for cancer therapy. GLS catalyzes the hydrolysis of glutamine to glutamate, which then supplies diverse metabolic pathways with carbon and/or nitrogen. Here, we report that SIRT5, a mitochondrial NAD+-dependent lysine deacylase, plays a key role in stabilizing GLS. In transformed cells, SIRT5 regulates glutamine metabolism by desuccinylating GLS and thereby protecting it from ubiquitin-mediated degradation. Moreover, we show that SIRT5 is up-regulated during cellular transformation and supports proliferation and tumorigenesis. Elevated SIRT5 expression in human breast tumors correlates with poor patient prognosis. These findings reveal a mechanism for increasing GLS expression in cancer cells and establish a role for SIRT5 in metabolic reprogramming and mammary tumorigenesis.

9.
Cell Rep ; 29(1): 76-88.e7, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31577957

ABSTRACT

Efforts to target glutamine metabolism for cancer therapy have focused on the glutaminase isozyme GLS. The importance of the other isozyme, GLS2, in cancer has remained unclear, and it has been described as a tumor suppressor in some contexts. Here, we report that GLS2 is upregulated and essential in luminal-subtype breast tumors, which account for >70% of breast cancer incidence. We show that GLS2 expression is elevated by GATA3 in luminal-subtype cells but suppressed by promoter methylation in basal-subtype cells. Although luminal breast cancers resist GLS-selective inhibitors, we find that they can be targeted with a dual-GLS/GLS2 inhibitor. These results establish a critical role for GLS2 in mammary tumorigenesis and advance our understanding of how to target glutamine metabolism in cancer.


Subject(s)
Breast Neoplasms/metabolism , Glutaminase/metabolism , Liver/metabolism , Animals , Breast Neoplasms/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line , Cell Line, Tumor , DNA Methylation/genetics , Female , GATA3 Transcription Factor/metabolism , Genes, Tumor Suppressor/physiology , Glutamine/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Mice , Promoter Regions, Genetic/genetics
10.
Mol Cell ; 75(4): 781-790.e3, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31300275

ABSTRACT

Rhodopsin (Rho), a prototypical G-protein-coupled receptor (GPCR) in vertebrate vision, activates the G-protein transducin (GT) by catalyzing GDP-GTP exchange on its α subunit (GαT). To elucidate the determinants of GT coupling and activation, we obtained cryo-EM structures of a fully functional, light-activated Rho-GT complex in the presence and absence of a G-protein-stabilizing nanobody. The structures illustrate how GT overcomes its low basal activity by engaging activated Rho in a conformation distinct from other GPCR-G-protein complexes. Moreover, the nanobody-free structures reveal native conformations of G-protein components and capture three distinct conformers showing the GαT helical domain (αHD) contacting the Gßγ subunits. These findings uncover the molecular underpinnings of G-protein activation by visual rhodopsin and shed new light on the role played by Gßγ during receptor-catalyzed nucleotide exchange.


Subject(s)
Multiprotein Complexes/chemistry , Rhodopsin/chemistry , Transducin/chemistry , Animals , Cattle , Cryoelectron Microscopy , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Domains , Protein Structure, Secondary , Rhodopsin/metabolism , Transducin/metabolism
11.
Methods Mol Biol ; 2009: 307-315, 2019.
Article in English | MEDLINE | ID: mdl-31152413

ABSTRACT

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and are targets for over 30% of all drugs on the market. Structural information of GPCRs and more importantly that of the complex between GPCRs and their signaling partner heterotrimeric G proteins is of great importance. Here we present a method for the large-scale purification of the rhodopsin-transducin complex, the GPCR-G protein signaling complex in visual phototransduction, directly from their native retinal membrane using native proteins purified from bovine retinae. Formation of the complex on native membrane is orchestrated in part by the proper engagement of lipid-modified rhodopsin and transducin (i.e., palmitoylation of the rhodopsin C-terminus, myristoylation and farnesylation of the αT and γ1, respectively). The resulting complex is of high purity and stability and has proved suitable for further biophysical and structural studies. The methods described here should be applicable to other recombinantly expressed receptors from insect cells or mamalian cells by forming stable, functional complexes directly on purified cell membranes.


Subject(s)
Cell Membrane/chemistry , Multiprotein Complexes , Retina/chemistry , Rhodopsin , Transducin , Animals , Cattle , Multiprotein Complexes/chemistry , Multiprotein Complexes/isolation & purification , Protein Structure, Quaternary , Rhodopsin/chemistry , Rhodopsin/isolation & purification , Transducin/chemistry , Transducin/isolation & purification
12.
Methods Mol Biol ; 2009: 317-324, 2019.
Article in English | MEDLINE | ID: mdl-31152414

ABSTRACT

Transmembrane proteins, such as G protein-coupled receptors (GPCR), require solubilization in detergents prior to purification. The recent development of novel detergents has allowed for the stabilization of GPCRs, which typically have a high degree of structural flexibility and are otherwise subject to denaturation. However, the detergent micelle environment is still very different from the native lipid membrane and the activity of GPCRs can be profoundly affected by interactions with annular lipid molecules. Moreover, GPCRs are often palmitoylated at their intracellular side, and a lipid bilayer environment would allow for proper orientation of these lipid modifications. Therefore, a reconstituted lipid bilayer environment would best mimic the physiological receptor microenvironment for biophysical studies of GPCRs and nanodiscs provide a methodology to address this aim. Nanodiscs are lipid bilayer discs stabilized by amphipathic membrane scaffolding proteins (MSP) where detergent-solubilized transmembrane proteins can be incorporated into them through a self-assembly process. Here we present a method for reconstituting the purified detergent-solubilized rhodopsin-transducin complex, the GPCR-G protein complex in visual phototransduction, into nanodiscs. The resulting complex incorporated into lipid nanodiscs can be used in biophysical studies including small-angle X-ray scattering and electron microscopy. This method is applicable to integral membrane proteins that mediate protein lipidation, including the zDHHC-family of S-acyltransferases and membrane-bound O-acyltransferases.


Subject(s)
Lipid Bilayers/chemistry , Nanostructures/chemistry , Rhodopsin/chemistry , Transducin/chemistry , Animals , Detergents/chemistry
13.
J Org Chem ; 84(9): 5927-5935, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30932493

ABSTRACT

A reaction sequence involving three-component [3 + 2] cycloaddition of azomethine ylides followed by CuI-catalyzed cascade trifluoromethyl radical addition and cyclization is developed for diastereoselective synthesis of fused-tetrahydrobenzodiazepin-3-ones.

14.
ACS Med Chem Lett ; 10(3): 278-286, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891127

ABSTRACT

Increasing the success rate and throughput of drug discovery will require efficiency improvements throughout the process that is currently used in the pharmaceutical community, including the crucial step of identifying hit compounds to act as drivers for subsequent optimization. Hit identification can be carried out through large compound collection screening and often involves the generation and testing of many hypotheses based on available knowledge. In practice, hypothesis generation can involve the selection of promising chemical structures from compound collections using predictive models built from previous screening/assay results. Available physical collections, typically used during hit identification, are of the order of 106 compounds but represent only a small fraction of the small molecule drug-like chemical space. In an effort to survey a larger portion of chemical space and eliminate inefficiencies during hit identification, we introduce a new process, termed Idea2Data (I2D) that tightly integrates computational and experimental components of the drug discovery process. I2D provides the ability to connect a vast virtual collection of compounds readily synthesizable on automated synthesis systems with computational predictive models for the identification of promising structures. This new paradigm enables researchers to process billions of virtual molecules and select structures that can be prepared on automated systems and made available for biological testing, allowing for timely hypothesis testing and follow-up. Since its introduction, I2D has positively impacted several portfolio efforts through identification of new chemical scaffolds and functionalization of existing scaffolds. In this Innovations paper, we describe the I2D process and present an application for the discovery of new ULK inhibitors.

15.
J Chem Theory Comput ; 14(10): 5143-5155, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30265003

ABSTRACT

We have recently significantly expanded the applicability of our Molecules-in-Molecules (MIM) fragmentation method to large proteins by developing a three-layer model (MIM3) in which an accurate quantum-mechanical method is used in conjunction with a cost-effective, dispersion-corrected semiempirical model to overcome previous computational bottlenecks. In this work, we develop MIM3 as a structure-based drug design tool by application of the methodology for the accurate calculation of protein-ligand interaction energies. A systematic protocol is derived for the determination of the geometries of the protein-ligand complexes and to calculate their accurate interaction energies in the gas phase using MIM3. We also derive a simple and affordable procedure based on implicit solvation models and the ligand solvent-accessible surface area to approximate the ligand desolvation penalty in gas-phase interaction energy calculations. We have carefully assessed how closely such interaction energies, which are based on a single protein-ligand conformation, display correlations with the experimentally determined binding affinities. The performance of MIM3 was evaluated on a total of seven data sets comprising 89 protein-ligand complexes, all with experimentally known binding affinities, using a binding pocket involving a quantum region ranging in size from 250 to 600 atoms. The dispersion-corrected B97-D3BJ density functional, previously known to perform accurately for calculations involving non-covalent interactions, was used as the target level of theory for this work, with dispersion-corrected PM6-D3 as the semiempirical low level to incorporate the long-range interactions. Comparing directly to the experimental binding potencies, we obtain impressive correlations over all seven test sets, with an R2 range of 0.74-0.93 and a Spearman rank correlation coefficient (ρ) range of 0.83-0.93. Our results suggest that protein-ligand interaction energies are useful in predicting binding potency trends and validate the potential of MIM3 as a quantum-chemical structure-based drug design tool.


Subject(s)
Molecular Docking Simulation , Proteins/metabolism , Databases, Protein , Humans , Ligands , Protein Binding , Protein Conformation , Proteins/chemistry , Quantum Theory , Thermodynamics
16.
J Biol Chem ; 293(46): 17941-17952, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30266806

ABSTRACT

Two regions on the α subunits of heterotrimeric GTP-binding proteins (G-proteins), the Switch II/α2 helix (which changes conformation upon GDP-GTP exchange) and the α3 helix, have been shown to contain the binding sites for their effector proteins. However, how the binding of Gα subunits to their effector proteins is translated into the stimulation of effector activity is still poorly understood. Here, we took advantage of a reconstituted rhodopsin-coupled phototransduction system to address this question and identified a distinct surface and an essential residue on the α subunit of the G-protein transducin (αT) that is necessary to fully activate its effector enzyme, the cGMP phosphodiesterase (PDE). We started with a chimeric G-protein α subunit (αT*) comprising residues mainly from αT and a short stretch of residues from the Gi1 α subunit (αi1), which only weakly stimulates PDE activity. We then reinstated the αT residues by systematically replacing the corresponding αi1 residues within αT* with the aim of fully restoring PDE stimulatory activity. These experiments revealed that the αG/α4 loop and a phenylalanine residue at position 283 are essential for conferring the αT* subunit with full PDE stimulatory capability. We further demonstrated that this same region and amino acid within the α subunit of the Gs protein (αs) are necessary for full adenylyl cyclase activation. These findings highlight the importance of the αG/α4 loop and of an essential phenylalanine residue within this region on Gα subunits αT and αs as being pivotal for their selective and optimal stimulation of effector activity.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Phenylalanine/chemistry , Transducin/metabolism , Adenylyl Cyclases/metabolism , Animals , Cattle , Chromogranins/metabolism , Enzyme Activation , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Gain of Function Mutation , HEK293 Cells , Humans , Protein Conformation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Rhodopsin/metabolism , Transducin/genetics
17.
J Biol Chem ; 292(34): 14280-14289, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28655769

ABSTRACT

The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (GT). This results in the dissociation of GT into its component αT-GTP and ß1γ1 subunit complex. Structural information for the Rho*-GT complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (GT*) comprising a GαT/Gαi1 chimera (αT*) and ß1γ1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to GαT* is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one GT*. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the ß2-adrenergic receptor-GS complex, including a flexible αT* helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex.


Subject(s)
Eye Proteins/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Models, Molecular , Rhodopsin/metabolism , Transducin/metabolism , Animals , Cattle , Crystallography, X-Ray , Detergents/chemistry , Eye Proteins/chemistry , Eye Proteins/genetics , Eye Proteins/isolation & purification , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/isolation & purification , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/isolation & purification , Light , Microscopy, Electron , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Protein Conformation/radiation effects , Protein Multimerization/radiation effects , Protein Stability/radiation effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Retina/enzymology , Retina/metabolism , Retina/radiation effects , Rhodopsin/chemistry , Rhodopsin/isolation & purification , Rod Cell Outer Segment/enzymology , Rod Cell Outer Segment/metabolism , Rod Cell Outer Segment/radiation effects , Scattering, Small Angle , Solubility , Transducin/chemistry , Transducin/genetics , Transducin/isolation & purification , X-Ray Diffraction
18.
J Biol Chem ; 292(15): 6095-6107, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28196863

ABSTRACT

The first step in glutamine catabolism is catalysis by the mitochondrial enzyme glutaminase, with a specific isoform, glutaminase C (GAC), being highly expressed in cancer cells. GAC activation requires the formation of homotetramers, promoted by anionic allosteric activators such as inorganic phosphate. This leads to the proper orientation of a flexible loop proximal to the dimer-dimer interface that is essential for catalysis (i.e. the "activation loop"). A major class of allosteric inhibitors of GAC, with the prototype being bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and the related molecule CB-839, binds to the activation loop and induces the formation of an inactive tetramer (two inhibitors bound per active tetramer). Here we describe a direct readout for monitoring the dynamics of the activation loop of GAC in response to these allosteric inhibitors, as well as allosteric activators, through the substitution of phenylalanine at position 327 with tryptophan (F327W). The tryptophan fluorescence of the GAC(F327W) mutant undergoes a marked quenching upon the binding of BPTES or CB-839, yielding titration profiles that make it possible to measure the binding affinities of these inhibitors for the enzyme. Allosteric activators like phosphate induce the opposite effect (i.e. fluorescence enhancement). These results describe direct readouts for the binding of the BPTES class of allosteric inhibitors as well as for inorganic phosphate and related activators of GAC, which should facilitate screening for additional modulators of this important metabolic enzyme.


Subject(s)
Benzeneacetamides/chemistry , Enzyme Activators/chemistry , Enzyme Inhibitors/chemistry , Glutaminase/antagonists & inhibitors , Glutaminase/chemistry , Mitochondrial Proteins/agonists , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/chemistry , Sulfides/chemistry , Thiadiazoles/chemistry , Allosteric Regulation , Amino Acid Substitution , Animals , Glutaminase/genetics , Mice , Mitochondrial Proteins/genetics , Mutation, Missense , Protein Structure, Secondary , Spectrometry, Fluorescence
19.
J Med Chem ; 59(24): 10974-10993, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002967

ABSTRACT

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu2/3) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu2/3 antagonists. Exploration of this structure-activity relationship (SAR) led to the identification of (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid hydrochloride (LY3020371·HCl, 19f), a potent, selective, and maximally efficacious mGlu2/3 antagonist. Further characterization of compound 19f binding to the human metabotropic 2 glutamate (hmGlu2) site was established by cocrystallization of this molecule with the amino terminal domain (ATD) of the hmGlu2 receptor protein. The resulting cocrystal structure revealed the specific ligand-protein interactions, which likely explain the high affinity of 19f for this site and support its functional mGlu2 antagonist pharmacology. Further characterization of 19f in vivo demonstrated an antidepressant-like signature in the mouse forced-swim test (mFST) assay when brain levels of this compound exceeded the cellular mGlu2 IC50 value.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Drug Discovery , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Brain/drug effects , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Cyclohexanes/pharmacology , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Motor Activity/drug effects , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/isolation & purification , Structure-Activity Relationship , Swimming
20.
J Biol Chem ; 291(40): 20900-20910, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27542409

ABSTRACT

Glutamine-derived carbon becomes available for anabolic biosynthesis in cancer cells via the hydrolysis of glutamine to glutamate, as catalyzed by GAC, a splice variant of kidney-type glutaminase (GLS). Thus, there is significant interest in understanding the regulation of GAC activity, with the suggestion being that higher order oligomerization is required for its activation. We used x-ray crystallography, together with site-directed mutagenesis, to determine the minimal enzymatic unit capable of robust catalytic activity. Mutagenesis of the helical interface between the two pairs of dimers comprising a GAC tetramer yielded a non-active, GAC dimer whose x-ray structure displays a stationary loop ("activation loop") essential for coupling the binding of allosteric activators like inorganic phosphate to catalytic activity. Further mutagenesis that removed constraints on the activation loop yielded a constitutively active dimer, providing clues regarding how the activation loop communicates with the active site, as well as with a peptide segment that serves as a "lid" to close off the active site following substrate binding. Our studies show that the formation of large GAC oligomers is not a pre-requisite for full enzymatic activity. They also offer a mechanism by which the binding of activators like inorganic phosphate enables the activation loop to communicate with the active site to ensure maximal rates of catalysis, and promotes the opening of the lid to achieve optimal product release. Moreover, these findings provide new insights into how other regulatory events might induce GAC activation within cancer cells.


Subject(s)
Glutaminase/metabolism , Glutamine/metabolism , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Protein Multimerization , Animals , Cell Line, Tumor , Enzyme Activation , Glutaminase/chemistry , Glutaminase/genetics , Glutamine/chemistry , Glutamine/genetics , Humans , Mice , NIH 3T3 Cells , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...