Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
2.
Nano Lett ; 15(4): 2612-9, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25723259

ABSTRACT

Transition metal dichalcogenides (TMDs) have emerged as a new class of two-dimensional materials that are promising for electronics and photonics. To date, optoelectronic measurements in these materials have shown the conventional behavior expected from photoconductors such as a linear or sublinear dependence of the photocurrent on light intensity. Here, we report the observation of a new regime of operation where the photocurrent depends superlinearly on light intensity. We use spatially resolved photocurrent measurements on devices consisting of CVD-grown monolayers of TMD alloys spanning MoS2 to MoSe2 to show the photoconductive nature of the photoresponse, with the photocurrent dominated by recombination and field-induced carrier separation in the channel. Time-dependent photoconductivity measurements show the presence of persistent photoconductivity for the S-rich alloys, while photocurrent measurements at fixed wavelength for devices of different alloy compositions show a systematic decrease of the responsivity with increasing Se content associated with increased linearity of the current-voltage characteristics. A model based on the presence of different types of recombination centers is presented to explain the origin of the superlinear dependence on light intensity, which emerges when the nonequilibrium occupancy of initially empty fast recombination centers becomes comparable to that of slow recombination centers.


Subject(s)
Disulfides/chemistry , Disulfides/radiation effects , Electrochemistry/instrumentation , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Molybdenum/chemistry , Molybdenum/radiation effects , Photochemistry/instrumentation , Alloys/chemistry , Alloys/radiation effects , Crystallization/methods , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Gases/chemistry , Light , Linear Models , Materials Testing , Models, Chemical , Nanotechnology/instrumentation , Nanotechnology/methods , Radiation Dosage
3.
ACS Nano ; 8(10): 9867-73, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25227319

ABSTRACT

Boron nitride nanoribbons (BNNRs) are theorized to have interesting electronic and magnetic properties, but their high-yield synthesis remains challenging. Here we demonstrate that potassium-induced splitting of BN nanotubes (BNNTs) is an effective high-yield method to obtain bulk quantities of high-quality BNNRs if a proper precursor material is chosen. The resulting BNNRs are crystalline; many of them have a high aspect ratio and straight parallel edges. We have observed numerous few-layer and monolayer BNNRs; the multilayered ribbons predominantly have an AA' stacking. We present a detailed microscopy study of BNNRs that provides important insights into the mechanism of the formation of BNNRs from BNNTs. We also demonstrate that the BNNTs prepared by different synthetic approaches could exhibit dramatically different reactivities in the potassium splitting reaction, which highlights the need for future comparison studies of BN nanomaterials prepared using different methods to better understand their preparation-dependent physical and chemical properties.

4.
Nano Lett ; 14(7): 3953-8, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24875576

ABSTRACT

Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.


Subject(s)
Nanotubes, Carbon/chemistry , Terahertz Spectroscopy/instrumentation , Equipment Design , Nanotubes, Carbon/ultrastructure , Temperature , Terahertz Radiation
5.
Nano Lett ; 14(4): 1927-31, 2014.
Article in English | MEDLINE | ID: mdl-24548238

ABSTRACT

We demonstrate methods to improve the crystalline-quality of free-standing Bi nanowires arrays on a Si substrate and enhance the preferred trigonal orientation for thermoelectric performance by annealing the arrays above the 271.4 °C Bi melting point. The nanowires maintain their geometry during melting due to the formation of a thin Bi-oxide protective shell that contains the molten Bi. Recrystallizing nanowires from the melt improves crystallinity; those cooled rapidly demonstrate a strong trigonal orientation preference.

6.
J Am Chem Soc ; 135(18): 6758-61, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23550733

ABSTRACT

Grain boundaries are observed and characterized in chemical vapor deposition-grown sheets of hexagonal boron nitride (h-BN) via ultra-high-resolution transmission electron microscopy at elevated temperature. Five- and seven-fold defects are readily observed along the grain boundary. Dynamics of strained regions and grain boundary defects are resolved. The defect structures and the resulting out-of-plane warping are consistent with recent theoretical model predictions for grain boundaries in h-BN.


Subject(s)
Boron Compounds/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL