Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(8): 3641-3659, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29590749

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel expressed in sensory neurons where it functions as an irritant sensor for a plethora of electrophilic compounds and is implicated in pain, itch, and respiratory disease. To study its function in various disease contexts, we sought to identify novel, potent, and selective small-molecule TRPA1 antagonists. Herein we describe the evolution of an N-isopropylglycine sulfonamide lead (1) to a novel and potent (4 R,5 S)-4-fluoro-5-methylproline sulfonamide series of inhibitors. Molecular modeling was utilized to derive low-energy three-dimensional conformations to guide ligand design. This effort led to compound 20, which possessed a balanced combination of potency and metabolic stability but poor solubility that ultimately limited in vivo exposure. To improve solubility and in vivo exposure, we developed methylene phosphate prodrug 22, which demonstrated superior oral exposure and robust in vivo target engagement in a rat model of AITC-induced pain.


Subject(s)
Prodrugs/pharmacology , Proline/analogs & derivatives , Proline/pharmacology , Sulfonamides/pharmacology , TRPA1 Cation Channel/antagonists & inhibitors , Animals , Dogs , Drug Discovery , Drug Stability , Humans , Ligands , Madin Darby Canine Kidney Cells , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Proline/chemical synthesis , Proline/pharmacokinetics , Rats , Solubility , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , TRPA1 Cation Channel/chemistry
2.
Bioorg Med Chem Lett ; 23(14): 4216-20, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23743277

ABSTRACT

Benzimidazole and indane are the two key fragments in our potent and selective MCH-1 receptor (MCHR1) antagonists. To identify novel linkers connecting the two fragments, we investigated diamino-cycloalkane-derived analogs and discovered highly potent antagonists with cis-1,4-diaminocyclohexane as a unique spacer in this chemical class. Structural overlay suggested that cis-1-substituted-4-aminocyclohexane functions as a bioisostere of 4-substituted-piperidine and that the active conformation adopts a U-shaped orientation.


Subject(s)
Cyclohexanes/chemistry , Indans/chemistry , Receptors, Pituitary Hormone/antagonists & inhibitors , Animals , Benzimidazoles/chemistry , Half-Life , Indans/metabolism , Indans/pharmacokinetics , Isomerism , Mice , Protein Binding , Rats , Receptors, Pituitary Hormone/metabolism
3.
ChemMedChem ; 8(4): 569-76, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23225346

ABSTRACT

Potency with potential: 2-Phenoxy-nicotinamides were identified as potent agonists at the GPBAR1 receptor, a target in the treatment of obesity, type 2 diabetes and metabolic syndrome. Extensive structure-activity relationship studies supported by homology modeling and docking resulted in the identification of optimized GPBAR1 agonists, potent against both human and mouse receptors, endowed with favorable physicochemical properties and good metabolic stability.


Subject(s)
Niacinamide/chemistry , Receptors, G-Protein-Coupled/agonists , Binding Sites , Humans , Molecular Docking Simulation , Niacinamide/metabolism , Protein Binding , Protein Structure, Tertiary , Quinolines/chemistry , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...