Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22270699

ABSTRACT

BackgroundThe goal of this study was to characterize the ability of school-aged children to self-collect adequate anterior nares (AN) swabs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. MethodsFrom July to August 2021, 287 children, age 4-14 years-old, were prospectively enrolled in the Atlanta area. Symptomatic (n=197) and asymptomatic (n=90) children watched a short instructional video before providing a self-collected AN specimen. Health care workers (HCWs) then collected a second specimen, and useability was assessed by the child and HCW. Swabs were tested side-by-side for SARS-CoV-2. RNase P RNA detection was investigated as a measure of specimen adequacy. ResultsAmong symptomatic children, 87/196 (44.4%) tested positive for SARS-CoV-2 by both self- and HCW-swab. Two children each were positive by self- or HCW-swab; one child had an invalid HCW-swab. Compared to HCW-swabs, self-collected swabs had 97.8% and 98.1% positive and negative percent agreements, respectively, and SARS-CoV-2 Ct values did not differ significantly between groups. Participants [≤]8 years-old were less likely than those >8 to be rated as correctly completing self-collection, but SARS-CoV-2 detection did not differ. Based on RNase P RNA detection, 270/287 children (94.1%) provided adequate self-swabs versus 277/287 (96.5%) HCW-swabs (p=0.24) with no difference when stratified by age. ConclusionsChildren, aged 4-14 years-old, can provide adequate AN specimens for SARS-CoV-2 detection when presented with age-appropriate instructional material, consisting of a video and a handout, at a single timepoint. These data support the use of self-collected AN swabs among school-age children for SARS-CoV-2 testing.

2.
Diana Rose E Ranoa; Robin L Holland; Fadi G Alnaji; Kelsie J Green; Leyi Wang; Richard L Fredrickson; Tong Wang; George N Wong; Johnny Uelmen; Sergei Maslov; Ahmed Elbanna; Zachary J Weiner; Alexei V Tkachenko; Hantao Zhang; Zhiru Liu; Sanjay J Patel; John M Paul; Nickolas P Vance; Joseph G Gulick; Sandeep P Satheesan; Isaac J Galvan; Andrew Miller; Joseph Grohens; Todd J Nelson; Mary P Stevens; P. Mark Hennessy; Robert C Parker; Edward Santos; Charles Brackett; Julie D Steinman; Melvin R Fenner Jr.; Kristin Dohrer; Kraig Wagenecht; Michael DeLorenzo; Laura Wilhelm-Barr; Brian R Brauer; Catherine Best-Popescu; Gary Durack; Nathan Wetter; David M Kranz; Jessica Breitbarth; Charlie Simpson; Julie A Pryde; Robin N Kaler; Chris Harris; Allison C Vance; Jodi L Silotto; Mark Johnson; Enrique Valera; Patricia K Anton; Lowa Mwilambwe; Stephen B Bryan; Deborah S Stone; Danita B Young; Wanda E Ward; John Lantz; John A Vozenilek; Rashid Bashir; Jeffrey S Moore; Mayank Garg; Julian C Cooper; Gillian Snyder; Michelle H Lore; Dustin L Yocum; Neal J Cohen; Jan E Novakofski; Melanie J Loots; Randy L Ballard; Mark Band; Kayla M Banks; Joseph D Barnes; Iuliana Bentea; Jessica Black; Jeremy Busch; Hannah Christensen; Abigail Conte; Madison Conte; Michael Curry; Jennifer Eardley; April Edwards; Therese Eggett; Judes Fleurimont; Delaney Foster; Bruce W Fouke; Nicholas Gallagher; Nicole Gastala; Scott A Genung; Declan Glueck; Brittani Gray; Andrew Greta; Robert M Healy; Ashley Hetrick; Arianna A Holterman; Nahed Ismail; Ian Jasenof; Patrick Kelly; Aaron Kielbasa; Teresa Kiesel; Lorenzo M Kindle; Rhonda L Lipking; Yukari C Manabe; Jade ? Mayes; Reubin McGuffin; Kenton G McHenry; Agha Mirza; Jada Moseley; Heba H Mostafa; Melody Mumford; Kathleen Munoz; Arika D Murray; Moira Nolan; Nil A Parikh; Andrew Pekosz; Janna Pflugmacher; Janise M Phillips; Collin Pitts; Mark C Potter; James Quisenberry; Janelle Rear; Matthew L Robinson; Edith Rosillo; Leslie N Rye; MaryEllen Sherwood; Anna Simon; Jamie M Singson; Carly Skadden; Tina H Skelton; Charlie Smith; Mary Stech; Ryan Thomas; Matthew A Tomaszewski; Erika A Tyburski; Scott Vanwingerden; Evette Vlach; Ronald S Watkins; Karriem Watson; Karen C White; Timothy L Killeen; Robert J Jones; Andreas C Cangellaris; Susan A Martinis; Awais Vaid; Christopher B Brooke; Joseph T Walsh; William C Sullivan; Rebecca L Smith; Nigel D Goldenfeld; Timothy M Fan; Paul J Hergenrother; Martin D Burke.
Preprint in English | medRxiv | ID: ppmedrxiv-21261548

ABSTRACT

In the Fall of 2020, many universities saw extensive transmission of SARS-CoV-2 among their populations, threatening the health of students, faculty and staff, the viability of in-person instruction, and the health of surrounding communities.1, 2 Here we report that a multimodal "SHIELD: Target, Test, and Tell" program mitigated the spread of SARS-CoV-2 at a large public university, prevented community transmission, and allowed continuation of in-person classes amidst the pandemic. The program combines epidemiological modelling and surveillance (Target); fast and frequent testing using a novel and FDA Emergency Use Authorized low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD (Test); and digital tools that communicate test results, notify of potential exposures, and promote compliance with public health mandates (Tell). These elements were combined with masks, social distancing, and robust education efforts. In Fall 2020, we performed more than 1,000,000 covidSHIELD tests while keeping classrooms, laboratories, and many other university activities open. Generally, our case positivity rates remained less than 0.5%, we prevented transmission from our students to our faculty and staff, and data indicate that we had no spread in our classrooms or research laboratories. During this fall semester, we had zero COVID-19-related hospitalizations or deaths amongst our university community. We also prevented transmission from our university community to the surrounding Champaign County community. Our experience demonstrates that multimodal transmission mitigation programs can enable university communities to achieve such outcomes until widespread vaccination against COVID-19 is achieved, and provides a roadmap for how future pandemics can be addressed.

SELECTION OF CITATIONS
SEARCH DETAIL
...