Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1397108, 2024.
Article in English | MEDLINE | ID: mdl-38745846

ABSTRACT

The black soldier fly (BSF), Hermetia illucens, is used in entomoremediation processes because its larvae can use a variety of organic residues with high efficiency. However, feed efficiencies are variable and characterized by uncertainties. Recently developed growth and metabolic performance models have predicted across different studies that BSF larvae have used 53%-58% of the feed components they have assimilated, in terms of carbon equivalents, for growth throughout their lifetime when reared on chicken feed. This is termed their average net growth efficiency. The remainder of the carbon has been lost as CO2. However, mass balances made under similar conditions show that the weight gained by BSF larvae corresponds to only 14%-48% of the feed substrates removed, indicating substrate conversion efficiency. Both performance indicators show even greater variability if more feed substrates are considered. Feed assimilation and growth rates, costs of growth, maintenance, and larval lifespan have been shown to affect how efficiently BSF larvae convert feed into growth. The differences between average net growth efficiencies and substrate conversion efficiencies further indicate that feed is often not used optimally in entomoremediation processes and that the overall yield of such processes is not determined by larval performance alone but is the result of processes and interactions between larvae, substrates, microbes, and their physical environment. The purpose of this study is to illustrate how quantification of the metabolic performance of BSF larvae can help improve our understanding of the role of the larvae in entomoremediation processes.

2.
PLoS One ; 17(10): e0276605, 2022.
Article in English | MEDLINE | ID: mdl-36288352

ABSTRACT

The black soldier fly (BSF) is becoming a novel farm animal. BSF larvae can be reared on different substrates. Their performance is important but highly variable and different models have been employed to analyze their growth, so far without considering that metabolic rates, growth, and biochemical composition of the larvae are interrelated. This work develops a dynamic model, which describes general growth patterns of BSF larvae and predicts observed variability in larval performances. The model was tested against data from literature, which combines kinetic growth data with measurements of lipid or dry weight content, and CO2 production. The model combines the kinetics of the logistic model with principles from differential energy budget models and considers key events in larval life history, moulting and metamorphosis. Larvae are compartmentised into structural biomass, storage lipids, and a pool of assimilates. Feed assimilation is considered the overall rate limiting process and is reduced in relation to larval weight by a logistic function. A second logistic function further reduces the specific growth rate of structural biomass, causes imbalance between and feed assimilation and growth rates, and leaves a surplus of assimilates to be stored as lipids. Fluxes between compartments consider cost of synthesis of structural biomass and lipids, as well as maintenance. When assimilation falls below maintenance needs, storage lipids are recycled. The model is able to describe growth and lipid contents of BSF larvae reared on chicken feed, growth of feed limited BSF larvae, as well as growth, dry weight content, and CO2 production of BSF larvae reared on different substrate qualities and moisture contents. The model may be used for the analysis of growth and performance of BSF larvae under variable rearing conditions. It can deepen the analyses of experimental data and provide insight into the causes of variability of larval performances.


Subject(s)
Carbon Dioxide , Diptera , Animals , Larva , Animal Feed/analysis , Lipids
3.
Waste Manag ; 127: 73-79, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33932852

ABSTRACT

Substrate moisture content is an important but not well-understood variable in production and waste reduction processes that involves black soldier fly (BSF) larvae. The purpose of this paper is to characterise growth and metabolic performance of BSF larvae on substrate moisture contents from 45 to 85%. Larvae developed into prepupae only at 45-75% substrate moisture content. Within this interval, the maximal specific growth rate was highest (0.73 day-1), the growth period shortest (13 days), and the maximal dry weight lowest (88 mg) at 45% moisture content. Differences in cost of growth and maintenance were not observed at the different substrate moisture contents, and differences in larval performance were likely associated to differences in co-occurring microbial activities. As much as 22% of the substrate carbon was emitted as CO2 at 45% moisture content by microorganisms, measured as the difference between total respiration and larval respiration, whereas microbial CO2 production amounted to only 3% of the substrate carbon at 75% moisture content. As consequence of the high specific growth rate and short growth phase, the overall net growth efficiency was higher at 45% moisture content (0.62) than at 75% moisture content (0.52). Overall, the metabolic performance of the BSF larvae was insensitive to differences in substrate moisture content. Their performance was, however indirectly affected by the substrate moisture content due to differences in co-occurring microbial processes in the substrate.


Subject(s)
Animal Feed , Diptera , Animal Feed/analysis , Animals , Larva
4.
Waste Manag ; 121: 198-205, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360818

ABSTRACT

We have measured growth and respiration in black soldier fly (BSF) larvae fed with mixtures of a low-quality substrate (degassed sludge, DS), and a high-quality substrate (chicken feed, CF) in order to elucidate how substrate quality affect larval metabolism and feed conversion into new biomass. The BSF larvae grew faster and became larger the higher the content of CF was in the substrate. Growth followed a sigmoidal curve from where the specific growth rate was determined and compared to measured specific respiration rates, in order to estimate costs of growth, maintenance metabolism, rates of feed assimilation, and net growth efficiency. Specific feed assimilation rates were similar on all substrate mixtures. Maximal specific growth rates were also affected only little unless the larvae were grown in pure DS. In contrast, the cost of growth and the maintenance metabolism were larger the higher the proportion of DS was. High specific growth rates were, in addition, sustained for shorter periods of the time the more DS was included in the substrate mixtures. In effect, higher proportions of the assimilated feed were spent on respiratory purposes instead of being converted into larval biomass and the net growth efficiency decreased the more DS was included in the substrate mixtures. We conclude that substrate quality may affect the conversion of feed into new biomass via alterations of the metabolic performance of BSF larvae and thereby the overall performance of BSF larval cultures.


Subject(s)
Diptera , Animals , Biomass , Chickens , Larva
5.
Sci Rep ; 9(1): 14543, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601859

ABSTRACT

Choanoflagellates are common members of planktonic communities. Some have complex life histories that involve transitions between multiple cell stages. We have grown the loricate choanoflagellate Diaphanoeca grandis on the bacterium Pantoea sp. and integrated kinetic observations at the culture level and at the single cell level. The life history of D. grandis includes a cell division cycle with a number of recognisable cell stages. Mature, loricate D. grandis were immobile and settled on the bottom substratum. Daughter cells were ejected from the lorica 30 min. after cell division, became motile and glided on the bottom substratum until they assembled a lorica. Single cell kinetics could explain overall growth kinetics in D. grandis cultures. The specific growth rate was 0.72 day-1 during exponential growth while mature D. grandis produced daughter cells at a rate of 0.9 day-1. Daughter cells took about 1.2 h to mature. D. grandis was able to abandon and replace its lorica, an event that delayed daughter cell formation by more than 2 days. The frequency of daughter cell formation varied considerably among individuals and single cell kinetics demonstrated an extensive degree of heterogeneity in D. grandis cultures, also when growth appeared to be balanced.


Subject(s)
Choanoflagellata/growth & development , Choanoflagellata/physiology , Biological Phenomena , Cell Division , Denmark , Kinetics , Pantoea , Seawater , Single-Cell Analysis , Species Specificity
6.
PLoS One ; 13(4): e0195935, 2018.
Article in English | MEDLINE | ID: mdl-29652905

ABSTRACT

Heterotrophic marine nanoflagellates are important grazers on bacteria in the water column. Some marine bacteria appear more resistant to grazing than do others. Marine nanoflagellates can be grown in the laboratory in batch cultures fed specific bacterial isolates. In some cultures, the flagellates appear unable to completely deplete the bacterial prey even when the bacterial strain otherwise is an excellent prey. This may indicate that some marine bacteria are able to induce defence mechanisms if they are grazed by nanoflagellates. Four morphologically distinct marine heterotrophic nanoflagellates, of which 3 were still identified as Procryptobia sorokini (Kinetoplastea) and one as Paraphysomonas imperforata (Chrysophyceae) were isolated from a coastal location along with 3 isolates of the marine bacterium Pseudoalteromonas sp. Flagellate growth and grazing on bacterial prey were analysed in batch cultures. Pseudoalteromonas was a suitable prey for all 4 flagellate isolates. They grazed and grew on Pseudoalteromonas as sole prey with maximal cell-specific growth rates of 0.1-0.25 h-1 and gross growth efficiencies of 38-61%. Exposure to dense flagellate cultures or their supernatants did, however, cause a fraction of the Pseudoalteromonas cells to aggregate and the bacterium became apparently resistant to grazing. Concentrations of suspended Pseudoalteromonas cells were therefore not decreased below 1,700-7,500 cells µL-1 by any of the flagellate isolates. These results indicate that Pseudoalteromonas sp. can be an excellent prey to marine nanoflagellates but also that is in possession of inducible mechanisms that protect against flagellate grazing.


Subject(s)
Aquatic Organisms , Heterotrophic Processes , Kinetoplastida/physiology , Pseudoalteromonas/physiology , Water Microbiology , Microbial Interactions , Seawater/microbiology
7.
Bioresour Technol ; 238: 296-305, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28454004

ABSTRACT

Galdieria sulphuraria 074G (Rhodophyta) was grown heterotrophically in defined medium and on amylolytic and proteolytic hydrolysed food waste from restaurants and bakeries. Substrate uptake, growth, and phycocyanin content were quantified in the cultures. The alga utilised carbohydrates and amino acids from the waste but ammonium and other inorganic nutrients were needed to stimulate phycocyanin synthesis. Highest specific phycocyanin contents (20-22mgg-1) were observed in cells grown at 25°C or 34°C on the food wastes. Growth inhibition was observed when the hydrolysates were used in quantities resulting in glucose concentrations of 10 and 50gL-1 for bakery and restaurant waste, respectively. Still, G. sulphuraria 074G grew and produced phycocyanin efficiently on food waste under adequate conditions and may potentially be utilised for synthesise of high-valuable products from food waste.


Subject(s)
Food , Microalgae , Phycocyanin , Refuse Disposal , Heterotrophic Processes , Restaurants , Rhodophyta
8.
Appl Microbiol Biotechnol ; 77(1): 69-75, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17786429

ABSTRACT

Production of biomass and phycocyanin (PC) were investigated in highly pigmented variants of the unicellular rhodophyte Galdieria sulphuraria, which maintained high specific pigment concentrations when grown heterotrophically in darkness. The parental culture, G. sulphuraria 074G was grown on solidified growth media, and intensely coloured colonies were isolated and grown in high-cell-density fed-batch and continuous-flow cultures. These cultures contained 80-110 g L(-1) biomass and 1.4-2.9 g L(-1) PC. The volumetric PC production rates were 0.5-0.9 g L(-1) day(-1). The PC production rates were 11-21 times higher than previously reported for heterotrophic G. sulphuraria 074G grown on glucose and 20-287 times higher than found in phototrophic cultures of Spirulina platensis, the organism presently used for commercial production of PC.


Subject(s)
Industrial Microbiology/methods , Phycocyanin/metabolism , Rhodophyta/growth & development , Rhodophyta/metabolism , Biomass , Industrial Microbiology/instrumentation , Time Factors
9.
J Appl Phycol ; 19(2): 161-174, 2007 Apr.
Article in English | MEDLINE | ID: mdl-19396354

ABSTRACT

Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO(2), H(2), and N(2) were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO(2) uptake was estimated from the addition of CO(2) as acidic titrant and O(2) evolution was estimated from titration by H(2), which was used to reduce O(2) over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O(2) evolution and CO(2) up-take rates. NH(4) (+), NO(2) (-), or NO(3) (-) was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH(4) (+) as the nitrogen source and 1.3 when NO(3) (-) was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3-4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO(2) and H(2) into the reactor headspace to estimate the up-take of CO(2), the production of O(2), and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.

10.
Biotechnol Bioeng ; 90(1): 77-84, 2005 Apr 05.
Article in English | MEDLINE | ID: mdl-15723314

ABSTRACT

Growth and phycocyanin production in batch and fed-batch cultures of the microalga Galdieria sulphuraria 074G, which was grown heterotrophically in darkness on glucose, fructose, sucrose, and sugar beet molasses, was investigated. In batch cultures, specific growth rates and yields of biomass dry weight on the pure sugars were 1.08-1.15 day-1 and 0.48-0.50 g g-1, respectively. They were slightly higher when molasses was the carbon source. Cellular phycocyanin contents during the exponential growth phase were 3-4 mg g-1 in dry weight. G. sulphuraria was able to tolerate concentrations of glucose and fructose of up to 166 g L-1 (0.9 M) and an ammonium sulfate concentration of 22 g L-1 (0.17 M) without negative effects on the specific growth rate. When the total concentration of dissolved substances in the growth medium exceeded 1-2 M, growth was completely inhibited. In carbon-limited fed-batch cultures, biomass dry weight concentrations of 80-120 g L-1 were obtained while phycocyanin accumulated to concentrations between 250 and 400 mg L-1. These results demonstrate that G. sulphuraria is well suited for growth in heterotrophic cultures at very high cell densities, and that such cultures produce significant amounts of phycocyanin. Furthermore, the productivity of phycocyanin in the heterotrophic fed-batch cultures of G. sulphuraria was higher than is attained in outdoor cultures of Spirulina platensis, where phycocyanin is presently obtained.


Subject(s)
Bioreactors/microbiology , Carbohydrate Metabolism , Cell Culture Techniques/methods , Phycocyanin/biosynthesis , Rhodophyta/growth & development , Rhodophyta/metabolism , Cell Count , Cell Proliferation , Hydrogen-Ion Concentration , Rhodophyta/classification , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...