Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ecol Evol ; 21(1): 107, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078291

ABSTRACT

BACKGROUND: The great diversity in plant genome size and chromosome number is partly due to polyploidization (i.e. genome doubling events). The differences in genome size and chromosome number among diploid plant species can be a window into the intriguing phenomenon of past genome doubling that may be obscured through time by the process of diploidization. The genus Hibiscus L. (Malvaceae) has a wide diversity of chromosome numbers and a complex genomic history. Hibiscus is ideal for exploring past genomic events because although two ancient genome duplication events have been identified, more are likely to be found due to its diversity of chromosome numbers. To reappraise the history of whole-genome duplication events in Hibiscus, we tested three alternative scenarios describing different polyploidization events. RESULTS: Using target sequence capture, we designed a new probe set for Hibiscus and generated 87 orthologous genes from four diploid species. We detected paralogues in > 54% putative single-copy genes. 34 of these genes were selected for testing three different genome duplication scenarios using gene counting. All species of Hibiscus sampled shared one genome duplication with H. syriacus, and one whole genome duplication occurred along the branch leading to H. syriacus. CONCLUSIONS: Here, we corroborated the independent genome doubling previously found in the lineage leading to H. syriacus and a shared genome doubling of this lineage and the remainder of Hibiscus. Additionally, we found a previously undiscovered genome duplication shared by the /Pavonia and /Malvaviscus clades (both nested within Hibiscus) with the occurrences of two copies in what were otherwise single-copy genes. Our results highlight the complexity of genomic diversity in some plant groups, which makes orthology assessment and accurate phylogenomic inference difficult.


Subject(s)
Hibiscus , Malvaceae , Gene Duplication , Genome, Plant/genetics , Hibiscus/genetics , Malvaceae/genetics , Phylogeny
2.
Mol Phylogenet Evol ; 107: 367-381, 2017 02.
Article in English | MEDLINE | ID: mdl-27919807

ABSTRACT

Although hybridisation through genome duplication is well known, hybridisation without genome duplication (homoploid hybrid speciation, HHS) is not. Few well-documented cases have been reported. A possible instance of HHS in Medicago prostrata Jacq. was suggested previously, based on only two genes and one individual. We tested whether this species was formed through HHS by sampling eight nuclear loci and 22 individuals, with additional individuals from related species, using gene capture and Illumina sequencing. Phylogenetic inference and coalescent simulations were performed to infer the causes of gene tree incongruence. We found no evidence that phylogenetic differences among M. prostrata individuals were the result of HHS. Instead, an autopolyploid origin of tetraploids with introgression from tetraploids of the M. sativa complex is likely. We argue that tetraploid M. prostrata individuals constitute a new species, characterised by a partially non-overlapping distribution and distinctive alleles (from the M. sativa complex). No gene flow from tetraploid to diploid M. prostrata is apparent, suggesting partial reproductive isolation. Thus, speciation via autopolyploidy appears to have been reinforced by introgression. This raises the intriguing possibility that introgressed alleles may be responsible for the increased range exploited by tetraploid M. prostrata with respect to that of the diploids.


Subject(s)
Inbreeding , Medicago/genetics , Polyploidy , Alleles , Base Sequence , Chromosomes, Plant/genetics , Computer Simulation , Genes, Plant , Hybridization, Genetic , Medicago/anatomy & histology , Phylogeny , Recombination, Genetic/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...