Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Org Biomol Chem ; 22(19): 3848-3853, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38635230

ABSTRACT

Herein the first example of conversion of alcohols into carboxylic acids by use of the Dess-Martin Periodinane (DMP), which is otherwise routinely employed for the conversion to aldehydes, is reported. This methodology will have significant potential utility in the synthesis of cytidine analogues and other related biologically important molecules.

2.
J Chem Inf Model ; 64(3): 905-917, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38282538

ABSTRACT

Inositol-requiring enzyme 1 (IRE1) is a transmembrane sensor that is part of a trio of sensors responsible for controlling the unfolded protein response within the endoplasmic reticulum (ER). Upon the accumulation of unfolded or misfolded proteins in the ER, IRE1 becomes activated and initiates the cleavage of a 26-nucleotide intron from human X-box-containing protein 1 (XBP1). The cleavage is mediated by the RtcB ligase enzyme, which splices together two exons, resulting in the formation of the spliced isoform XBP1s. The XBP1s isoform activates the transcription of genes involved in ER-associated degradation to maintain cellular homeostasis. The catalytic activity of RtcB is controlled by the phosphorylation and dephosphorylation of three tyrosine residues (Y306, Y316, and Y475), which are regulated by the ABL1 tyrosine kinase and PTP1B phosphatase, respectively. This study focuses on investigating the mechanism by which the PTP1B phosphatase activates the RtcB ligase using a range of advanced in silico methods. Protein-protein docking identified key interacting residues between RtcB and PTP1B. Notably, the phosphorylated Tyr306 formed hydrogen bonds and salt bridge interactions with the "gatekeeper" residues Arg47 and Lys120 of the inactive PTP1B. Classical molecular dynamics simulation emphasized the crucial role of Asp181 in the activation of PTP1B, driving the conformational change from an open to a closed state of the WPD-loop. Furthermore, QM/MM-MD simulations provided insights into the free energy landscape of the dephosphorylation reaction mechanism of RtcB, which is mediated by the PTP1B phosphatase.


Subject(s)
Ligases , Phosphoric Monoester Hydrolases , Humans , Ligases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Protein Isoforms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
3.
Commun Chem ; 7(1): 6, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38177336

ABSTRACT

The flavonoid Quercetin (Qe) was identified as an activator of Inositol-requiring enzyme 1 (IRE1) in S. cerevisiae (scIre1p), but its impact on human IRE1 (hIRE1) remains controversial due to the absence of a conserved Qe binding site. We have explored the binding modes and effect of Qe on both scIre1p and hIRE1 dimers using in silico and in vitro approaches. The activation site in scIre1p stably accommodates both Qe and its derivative Quercitrin (Qi), thus enhancing the stability of the RNase pocket. However, the corresponding region in hIRE1 does not bind any of the two molecules. Instead, we show that both Qe and Qi block the RNase activity of hIRE1 in vitro, with sub-micromolar IC50 values. Our results provide a rationale for why Qe is an activator in scIre1p but a potent inhibitor in hIRE1. The identification of a new allosteric site in hIRE1 opens a promising window for drug development and UPR modulation.

4.
J Biomol Struct Dyn ; 42(5): 2197-2210, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37098781

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen prone to developing drug-resistance and is a major cause of infection for burn patients and patients suffering from cystic fibrosis or are hospitalized in intensive care units. One of the virulence factors of this bacterium is the lipase enzyme that degrades the extracellular matrix of the host tissue and promotes invasion. Bromhexine is a mucolytic drug and has recently been reported to function as a competitive inhibitor of lipase with an IC50 value of 49 µM. In the present study, an attempt was made to identify stronger inhibitors from the ChEMBL database of bioactive compounds, as compared to the reference compound Bromhexine. Following docking and MD simulations, four hit compounds (N1-N4) were selected that showed promising binding modes and low RMSD values indicative of stable protein-ligand complexes. From subsequent binding pose metadynamics (BPMD) simulations, two of these (N2 and N4) stood out as more potent than Bromhexine, displaying stable interactions with residues in the catalytic site of the enzyme. Biological investigations were performed for all four compounds. Among them, the same two hit compounds were found to be the most effective binders with IC50 values of 22.1 and 27.5 µM, respectively; i.e. roughly twice as efficient as the reference Bromhexine. Taken together, our results show that these hits can be promising new candidates to use as leads for the development of drugs targeting the P. aeruginosa lipase enzyme.Communicated by Ramaswamy H. Sarma.


Subject(s)
Bromhexine , Pseudomonas aeruginosa , Humans , Lipase , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Molecular Dynamics Simulation
5.
Trends Biochem Sci ; 49(1): 52-67, 2024 01.
Article in English | MEDLINE | ID: mdl-37945409

ABSTRACT

Post-translational modifications (PTMs) add a major degree of complexity to the proteome and are essential controllers of protein homeostasis. Amongst the hundreds of PTMs identified, ubiquitin and ubiquitin-like (UBL) modifications are recognized as key regulators of cellular processes through their ability to affect protein-protein interactions, protein stability, and thus the functions of their protein targets. Here, we focus on the most recently identified UBL, ubiquitin-fold modifier 1 (UFM1), and the machinery responsible for its transfer to substrates (UFMylation) or its removal (deUFMylation). We first highlight the biochemical peculiarities of these processes, then we develop on how UFMylation and its machinery control various intertwined cellular processes and we highlight some of the outstanding research questions in this emerging field.


Subject(s)
Proteins , Ubiquitin , Ubiquitin/metabolism , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Protein Processing, Post-Translational , Cell Communication
6.
Cell Mol Life Sci ; 80(12): 352, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935993

ABSTRACT

To be functional, some RNAs require a processing step involving splicing events. Each splicing event necessitates an RNA ligation step. RNA ligation is a process that can be achieved with various intermediaries such as self-catalysing RNAs, 5'-3' and 3'-5' RNA ligases. While several types of RNA ligation mechanisms occur in human, RtcB is the only 3'-5' RNA ligase identified in human cells to date. RtcB RNA ligation activity is well known to be essential for the splicing of XBP1, an essential transcription factor of the unfolded protein response; as well as for the maturation of specific intron-containing tRNAs. As such, RtcB is a core factor in protein synthesis and homeostasis. Taking advantage of the high homology between RtcB orthologues in archaea, bacteria and eukaryotes, this review will provide an introduction to the structure of RtcB and the mechanism of 3'-5' RNA ligation. This analysis is followed by a description of the mechanisms regulating RtcB activity and localisation, its known partners and its various functions from bacteria to human with a specific focus on human cancer.


Subject(s)
RNA Ligase (ATP) , Transcription Factors , Humans , RNA Ligase (ATP)/genetics , RNA Ligase (ATP)/chemistry , RNA Ligase (ATP)/metabolism , Transcription Factors/metabolism , RNA/metabolism , Unfolded Protein Response , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA Splicing/genetics
7.
ACS Omega ; 8(16): 14440-14458, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37125100

ABSTRACT

Unfolded protein response (UPR)-dependent metabolic reprogramming diverts metabolites from glycolysis to mitochondrial 1C metabolism, highlighting pharmacological resistance to folate drugs and overexpression of certain enzymes. Methylenetetrahydrofolate dehydrogenase (MTHFD2) is a mitochondrial enzyme that plays a key role in 1C metabolism in purine and thymidine synthesis and is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. To the best of our knowledge, tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported until the present date. The current study aims at the investigation of the available structural data of MTHFD2 in complex with potent and selective inhibitors that occupy the substrate binding site, further providing insights into binding mode, key protein-ligand interactions, and conformational dynamics, that correspond to the experimental binding affinities and biological activities. In addition, we carried out structure-based drug design on the substrate binding site of MTHFD2, by exploiting the cocrystal structure of MTHFD2 with the tricyclic coumarin-based inhibitor. The structure-based drug design campaign involves R-group enumeration, bioisostere replacement, molecular docking, ADME prediction, MM-GBSA binding free energy calculations, and molecular dynamics simulations, that led to a small library of new and potential compounds, capable of selectively inhibiting MTHFD2. The results reported herein are expected to benefit medicinal chemists working on the development of selective MTHFD2 inhibitors for cancer treatment, although experimental validation by biochemical and/or pharmacokinetic assays is required to substantiate the outcomes of the study.

8.
ChemistryOpen ; 12(5): e202300052, 2023 05.
Article in English | MEDLINE | ID: mdl-37129313

ABSTRACT

Methylenetetrahydrofolate dehydrogenase (MTHFD2) is a mitochondrial enzyme involved in 1 C metabolism that is upregulated in various cancer cells, but absent in normal proliferating cells. Xanthine derivatives are the first selective inhibitors of MTHFD2 which bind to its allosteric site. Xanthine derivatives (including the co-crystallized inhibitors) were herein interrogated by molecular/induced-fit docking, MM-GBSA binding free energy calculations and molecular dynamics simulations in both MTHFD2 and MTHFD1 (a close homolog expressed in healthy cells). The gained insights from our in silico protocol allowed us to study binding mode, key protein-ligand interactions and dynamic movement of the allosteric inhibitors, correlating with their experimental binding affinities, biological activities and selectivity for MTHFD2. The reported conformational changes with MTHFD2 upon binding of xanthine derivatives were furthermore evaluated and confirmed by RMSF analyses of the MD simulation trajectories. The results reported herein are expected to benefit in the rational design of selective MTHFD2 allosteric inhibitors.


Subject(s)
Methylenetetrahydrofolate Dehydrogenase (NADP) , Molecular Dynamics Simulation , Allosteric Site , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Xanthine , Molecular Docking Simulation
9.
iScience ; 26(5): 106687, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37216120

ABSTRACT

Inositol-requiring enzyme 1 (IRE1) is a major mediator of the unfolded protein response (UPR), which is activated upon endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues, a stress overcome by relying on IRE1 signaling as an adaptive mechanism. Herein, we report the discovery of structurally new IRE1 inhibitors identified through the structural exploration of its kinase domain. Characterization in in vitro and in cellular models showed that they inhibit IRE1 signaling and sensitize glioblastoma (GB) cells to the standard chemotherapeutic, temozolomide (TMZ). Finally, we demonstrate that one of these inhibitors, Z4P, permeates the blood-brain barrier (BBB), inhibits GB growth, and prevents relapse in vivo when administered together with TMZ. The hit compound disclosed herein satisfies an unmet need for targeted, non-toxic IRE1 inhibitors and our results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB.

10.
J Chem Inf Model ; 63(5): 1578-1591, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36802593

ABSTRACT

Exotoxin A (ETA) is an extracellular secreted toxin and a single-chain polypeptide with A and B fragments that is produced by Pseudomonas aeruginosa. It catalyzes the ADP-ribosylation of a post-translationally modified histidine (diphthamide) on eukaryotic elongation factor 2 (eEF2), which results in the inactivation of the latter and the inhibition of protein biosynthesis. Studies show that the imidazole ring of diphthamide plays an important role in the ADP-ribosylation catalyzed by the toxin. In this work, we employ different in silico molecular dynamics (MD) simulation approaches to understand the role of diphthamide versus unmodified histidine in eEF2 on the interaction with ETA. Crystal structures of the eEF2-ETA complexes with three different ligands NAD+, ADP-ribose, and ßTAD were selected and compared in the diphthamide and histidine containing systems. The study shows that NAD+ bound to ETA remains very stable in comparison with other ligands, enabling the transfer of ADP-ribose to the N3 atom of the diphthamide imidazole ring in eEF2 during ribosylation. We also show that unmodified histidine in eEF2 has a negative impact on ETA binding and is not a suitable target for the attachment of ADP-ribose. Analyzing of radius of gyration and COM distances for NAD+, ßTAD, and ADP-ribose complexes revealed that unmodified His affects the structure and destabilizes the complex with all different ligands throughout the MD simulations.


Subject(s)
Histidine , Molecular Dynamics Simulation , Peptide Elongation Factor 2/chemistry , Histidine/chemistry , NAD/metabolism , Adenosine Diphosphate Ribose/metabolism , Pseudomonas aeruginosa , Pseudomonas aeruginosa Exotoxin A
11.
Sci Rep ; 13(1): 643, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635365

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is growing rapidly among the elderly population around the world. Studies show that a lack of acetylcholine and butyrylcholine due to the overexpression of enzymes Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) may lead to reduced communication between neuron cells. As a result, seeking novel inhibitors targeting these enzymes might be vital for the future treatment of AD. Ondansetron is used to prevent nausea and vomiting caused by chemotherapy or radiation treatments and is herein shown to be a potent inhibitor of cholinesterase. Comparison is made between Ondansetron and FDA-approved cholinesterase inhibitors Rivastigmine and Tacrine. Molecular docking demonstrates that interactions between the studied ligand and aromatic residues in the peripheral region of the active site are important in binding. Molecular dynamics simulations and binding pose metadynamics show that Ondansetron is highly potent against both enzymes and far better than Rivastigmine. Inhibitor activities evaluated by in vitro studies confirm that the drug inhibits AChE and BChE by non-competitive and mixed inhibition, respectively, with IC50 values 33 µM (AChE) and 2.5 µM (BChE). Based on the findings, we propose that Ondansetron may have therapeutic applications in inhibiting cholinesterase, especially for BChE.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Ondansetron , Humans , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Ondansetron/pharmacology , Rivastigmine/pharmacology , Structure-Activity Relationship , Tacrine/pharmacology
12.
CRISPR J ; 6(1): 17-31, 2023 02.
Article in English | MEDLINE | ID: mdl-36629845

ABSTRACT

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Subject(s)
Gangliosidosis, GM1 , Humans , Gangliosidosis, GM1/therapy , Gangliosidosis, GM1/drug therapy , beta-Galactosidase/genetics , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Gene Editing , CRISPR-Cas Systems/genetics , Alleles
13.
FEBS J ; 290(12): 3145-3164, 2023 06.
Article in English | MEDLINE | ID: mdl-36694998

ABSTRACT

CD95 is a member of the TNF receptor superfamily that is ubiquitously expressed in healthy and pathological tissues. Stimulation of CD95 by its physiological ligand CD95L induces its oligomerization leading in turn to the transduction of either apoptotic or nonapoptotic signals. CD95L can exist as both membrane-anchored and soluble forms (sCD95L), the latter resulting from the proteolytic cleavage of the former. Candidate proteases able to achieve CD95L cleavage were identified as matrix metalloproteases (MMP) due to their demonstrated ability to cleave other TNF superfamily ligands. The main goal of this study was to systematically identify the MMP family members capable of cleaving CD95L and subsequently determine the corresponding cleavage sites. By using different orthogonal biochemical approaches and combining them with molecular modelling, we confirmed data from the literature regarding CD95L cleavage by MMP-3 and MMP-7. Moreover, we found that MMP-2 and MMP-12 can cleave CD95L and characterized their resulting cleavage sites. This study provides a systematic approach to analyse the cleavage of CD95L, which until now had only been poorly described.


Subject(s)
Metalloproteases , fas Receptor , Fas Ligand Protein/chemistry , fas Receptor/physiology , Apoptosis/physiology
14.
Life Sci Alliance ; 5(12)2022 10 13.
Article in English | MEDLINE | ID: mdl-36229063

ABSTRACT

Aquaporins are protein channels embedded in the lipid bilayer in cells from all organisms on earth that are crucial for water homeostasis. In fish, aquaporins are believed to be important for osmoregulation; however, the molecular mechanism behind this is poorly understood. Here, we present the first structural and functional characterization of a fish aquaporin; cpAQP1aa from the fresh water fish climbing perch (<i>Anabas testudineus</i>), a species that is of high osmoregulatory interest because of its ability to spend time in seawater and on land. These studies show that cpAQP1aa is a water-specific aquaporin with a unique fold on the extracellular side that results in a constriction region. Functional analysis combined with molecular dynamic simulations suggests that phosphorylation at two sites causes structural perturbations in this region that may have implications for channel gating from the extracellular side.


Subject(s)
Aquaporins , Lipid Bilayers , Animals , Aquaporins/chemistry , Aquaporins/metabolism , Fresh Water , Seawater , Water/metabolism
16.
Oncogene ; 41(42): 4673-4685, 2022 10.
Article in English | MEDLINE | ID: mdl-36068336

ABSTRACT

Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.


Subject(s)
Gastrointestinal Neoplasms , Oncogene Proteins , Animals , Carcinogenesis/genetics , Gastrointestinal Neoplasms/genetics , Inflammation/genetics , Mice , Mucoproteins/genetics , Oncogene Proteins/genetics , Protein Disulfide-Isomerases , Tumor Microenvironment
17.
Nucleic Acids Res ; 50(16): 9072-9082, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35979954

ABSTRACT

The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.


Subject(s)
DNA Repair , DNA , Base Pairing , DNA/chemistry , DNA Damage , Hydrogen Bonding , Nucleic Acid Conformation , Thermodynamics
18.
ACS Omega ; 7(33): 29475-29482, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033698

ABSTRACT

Computational quantum chemistry within the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) framework is used to investigate the photodegradation mechanism as well as the photochemical and photophysical properties of benoxaprofen (BP), a non steroid anti-inflammatory molecule (2-[2-(4-chlorophenyl)-1,3-benzoxazol-5-yl] propanoic acid). BP is a highly phototoxic agent that causes cutaneous phototoxicity shortly after its administration. On the grounds of concern about serious side effects, especially hepatotoxicity, it was withdrawn from the world market after only 2 years of its release. Our study shows that the drug has the capability to absorb radiation in the UV region, mainly between 300 and 340 nm, and undergoes spontaneous photoinduced decarboxylation from the triplet state. It shows very similar photochemical properties to the highly photolabile non-steroidal anti-inflammatory drugs (NSAIDs) ketoprofen, suprofen, and tiaprofenic acid. Like ketoprofen, BP can also decarboxylate from excited singlet states by overcoming low energy barriers. The differences in molecular orbital (highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)) distributions between the neutral and deprotonated BP, their absorption spectra, and the energetics and fate of various photoproducts produced throughout the photodegradation are discussed. Initiation and termination of decarboxylated BP radical species and initiation of propagating lipid peroxidation reactions due to the addition of molecular oxygen giving rise to the corresponding peroxyl radical are also explored in detail.

19.
J Chem Inf Model ; 62(17): 4247-4260, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35960929

ABSTRACT

A range of in silico methodologies were herein employed to study the unconventional XBP1 mRNA cleavage mechanism performed by the unfolded protein response (UPR) mediator Inositol Requiring Enzyme 1α (IRE1). Using Protein-RNA molecular docking along with a series of extensive restrained/unrestrained atomistic molecular dynamics (MD) simulations, the dynamical behavior of the system was evaluated and a reliable model of the IRE1/XBP1 mRNA complex was constructed. From a series of well-converged quantum mechanics molecular mechanics well-tempered metadynamics (QM/MM WT-MetaD) simulations using the Grimme dispersion interaction corrected semiempirical parametrization method 6 level of theory (PM6-D3) and the AMBER14SB-OL3 force field, the free energy profile of the cleavage mechanism was determined, along with intermediates and transition state structures. The results show two distinct reaction paths based on general acid-general base type mechanisms, with different activation energies that perfectly match observations from experimental mutagenesis data. The study brings unique atomistic insights into the cleavage mechanism of XBP1 mRNA by IRE1 and clarifies the roles of the catalytic residues H910 and Y892. Increased understanding of the details in UPR signaling can assist in the development of new therapeutic agents for its modulation.


Subject(s)
Inositol , Ribonucleases , Endoribonucleases/genetics , Molecular Docking Simulation , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Ribonucleases/metabolism
20.
J Chem Inf Model ; 62(12): 2999-3007, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35699524

ABSTRACT

Peptides are an important modality in drug discovery. While current peptide optimization focuses predominantly on the small number of natural and commercially available non-natural amino acids, the chemical spaces available for small molecule drug discovery are in the billions of molecules. In the present study, we describe the development of a large virtual library of readily synthesizable non-natural amino acids that can power the virtual screening protocols and aid in peptide optimization. To that end, we enumerated nearly 380 thousand amino acids and demonstrated their vast chemical diversity compared to the 20 natural and commercial residues. Furthermore, we selected a diverse ten thousand amino acid subset to validate our virtual screening workflow on the Keap1-Neh2 complex model system. Through in silico mutations of Neh2 peptide residues to those from the virtual library, our docking-based protocol identified a number of possible solutions with a significantly higher predicted affinity toward the Keap1 protein. This protocol demonstrates that the non-natural amino acid chemical space can be massively extended and virtually screened with a reasonable computational cost.


Subject(s)
Amino Acids , NF-E2-Related Factor 2 , Amino Acids/chemistry , Drug Discovery/methods , Kelch-Like ECH-Associated Protein 1 , Molecular Docking Simulation , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...