Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Eur Respir J ; 62(3)2023 09.
Article in English | MEDLINE | ID: mdl-37442582

ABSTRACT

BACKGROUND: Epithelial damage, repair and remodelling are critical features of chronic airway diseases including chronic obstructive pulmonary disease (COPD). Interleukin (IL)-33 released from damaged airway epithelia causes inflammation via its receptor, serum stimulation-2 (ST2). Oxidation of IL-33 to a non-ST2-binding form (IL-33ox) is thought to limit its activity. We investigated whether IL-33ox has functional activities that are independent of ST2 in the airway epithelium. METHODS: In vitro epithelial damage assays and three-dimensional, air-liquid interface (ALI) cell culture models of healthy and COPD epithelia were used to elucidate the functional role of IL-33ox. Transcriptomic changes occurring in healthy ALI cultures treated with IL-33ox and COPD ALI cultures treated with an IL-33-neutralising antibody were assessed with bulk and single-cell RNA sequencing analysis. RESULTS: We demonstrate that IL-33ox forms a complex with receptor for advanced glycation end products (RAGE) and epidermal growth factor receptor (EGFR) expressed on airway epithelium. Activation of this alternative, ST2-independent pathway impaired epithelial wound closure and induced airway epithelial remodelling in vitro. IL-33ox increased the proportion of mucus-producing cells and reduced epithelial defence functions, mimicking pathogenic traits of COPD. Neutralisation of the IL-33ox pathway reversed these deleterious traits in COPD epithelia. Gene signatures defining the pathogenic effects of IL-33ox were enriched in airway epithelia from patients with severe COPD. CONCLUSIONS: Our study reveals for the first time that IL-33, RAGE and EGFR act together in an ST2-independent pathway in the airway epithelium and govern abnormal epithelial remodelling and muco-obstructive features in COPD.


Subject(s)
Interleukin-33 , Pulmonary Disease, Chronic Obstructive , Humans , Epithelial Cells/metabolism , Epithelial Cells/pathology , ErbB Receptors , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33/genetics , Interleukin-33/metabolism , Oxidation-Reduction , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Receptor for Advanced Glycation End Products/metabolism
2.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-36949964

ABSTRACT

Background: Type 2 (T2) high asthma is recognised as a heterogenous entity consisting of several endotypes; however, the prevalence and distribution of the T2 biomarkers in the general asthma population, across asthma severity, and across compartments is largely unknown. The objective of the present study was to describe expression and overlaps of airway and systemic T2 biomarkers in a clinically representative asthma population. Methods: Patients with asthma from the real-life BREATHE cohort referred to a specialist centre were included and grouped according to T2 biomarkers: blood and sputum eosinophilia (≥0.3×109 cells·L-1 and 3% respectively), total IgE (≥150 U·mL-1), and fractional exhaled nitric oxide (≥25 ppb). Results: Patients with mild-to-moderate asthma were younger (41 versus 49 years, p<0.001), had lower body mass index (25.9 versus 28.0 kg·m-2, p=0.002) and less atopy (47% versus 58%, p=0.05), higher forced expiratory volume in 1 s (3.2 versus 2.8 L, p<0.001) and forced vital capacity (4.3 versus 3.9 L, p<0.001) compared with patients with severe asthma, who had higher blood (0.22×109 versus 0.17×109 cells·L-1, p=0.01) and sputum (3.0% versus 1.5%, p=0.01) eosinophils. Co-expression of all T2 biomarkers was a particular characteristic of severe asthma (p<0.001). In patients with eosinophilia, sputum eosinophilia without blood eosinophilia was present in 45% of patients with mild-to-moderate asthma and 35% with severe asthma. Conclusion: Severe asthma is more commonly associated with activation of several T2 pathways, indicating that treatments targeting severe asthma may need to act more broadly on T2 inflammatory pathways. Implementation of airway inflammometry in clinical care is of paramount importance, as the best treatable trait is otherwise is overlooked in a large proportion of patients irrespective of disease severity.

3.
Respir Med ; 210: 107168, 2023.
Article in English | MEDLINE | ID: mdl-36822489

ABSTRACT

Asthma is typically characterized by variable respiratory symptoms and airflow limitation. Along with the pathophysiology and symptoms are immunological and inflammatory processes. The last decades research has revealed that the immunology of asthma is highly heterogeneous. This has clinical consequences and identification of immunological phenotypes is currently used to guide biological treatment. The focus of this review is on another dimension of asthma diversity, namely anatomical heterogeneity. Immunopathological alterations may go beyond the central airways to also involve the distal airways, the alveolar parenchyma, and pulmonary vessels. Also, extrapulmonary tissues are affected. The anatomical distribution of inflammation in asthma has remained relatively poorly discussed despite its potential implication on both clinical presentation and response to treatment. There is today evidence that a significant proportion of the asthma patients has small airway disease with type 2 immunity, eosinophilia and smooth muscle infiltration of mast cells. The small airways in asthma are also subjected to remodelling, constriction, and luminal plugging, events that are likely to contribute to the elevated distal airway resistance seen in some patients. In cases when the inflammation extends into the alveolar parenchyma alveolar FCER1-high mast cells, eosinophilia, type 2 immunity and activated alveolar macrophages, together with modest interstitial remodelling, create a complex immunopathological picture. Importantly, the distal lung inflammation in asthma can be pharmacologically targeted by use of inhalers with more distal drug deposition. Biological treatments, which are readily distributed to the distal lung, may also be beneficial in eligible patients with more severe and anatomically widespread disease.


Subject(s)
Asthma , Eosinophilia , Pulmonary Disease, Chronic Obstructive , Humans , Asthma/drug therapy , Lung , Inflammation
4.
Acta Otolaryngol ; 142(9-12): 696-704, 2022.
Article in English | MEDLINE | ID: mdl-36562632

ABSTRACT

BACKGROUND: Allergic rhinitis (AR), a common condition in the westernized world, is suggested to be more immunologically complex than the archetypical 'Th2' inflammation. New approaches are needed to decode this complexity. AIMS/OBJECTIVES: In this study, we explored a novel histology-based analysis for circulating blood leukocyte profiling in 16 patients with seasonal AR outside and during the pollen season. MATERIAL AND METHODS: Leukocytes were purified with minimal ex-vivo artefacts, embedded into agarose-paraffin pellets for immunohistochemistry-based immune cell profiling. Blood leukocyte mapping was performed. RESULTS: Samples collected during the pollen season had statistically increased eosinophils, neutrophils, monocytes, and CD8+ T-lymphocytes compared to the off-season baseline. In contrast, no change was observed for CD20+ B-lymphocytes and CD3+ T-lymphocytes. Subclassification of CD4+ T-helper cells demonstrated a parallel and significant expansion of Th2 and Th17-cells during the pollen season, while Th1-cells remained unchanged. Whereas absolute basophils numbers were unaltered, the basophil markers GATA2 and CPA3 increased during the pollen season. CONCLUSIONS AND SIGNIFICANCE: This study introduces a novel and applicable method for systemic immune cell screening and provides further evidence of complex and parallel Th2 and Th17-immune signatures in seasonal AR. It also forwards GATA2 and CPA3 as potential biomarkers for ongoing allergic inflammation.


Subject(s)
Rhinitis, Allergic, Seasonal , Rhinitis, Allergic , Humans , Pollen , Neutrophils , Inflammation
5.
Front Immunol ; 13: 1079775, 2022.
Article in English | MEDLINE | ID: mdl-36569898

ABSTRACT

Introduction: During airway infection, upregulation of proinflammatory cytokines and subsequent immune cell recruitment is essential to mitigate bacterial infection. Conversely, during prolonged and non-resolving airway inflammation, neutrophils contribute to tissue damage and remodeling. This occurs during diseases including cystic fibrosis (CF) and COPD where bacterial pathogens, not least Pseudomonas aeruginosa, contribute to disease progression through long-lasting infections. Tartrate-resistant acid phosphatase (TRAP) 5 is a metalloenzyme expressed by alveolar macrophages and one of its target substrates is the phosphoglycoprotein osteopontin (OPN). Methods: We used a knockout mouse strain (Trap5-/-) and BALB/c-Tg (Rela-luc)31Xen mice paired with siRNA administration or functional protein add-back to elucidate the role of Trap5 during bacterial infection. In a series of experiments, Trap5-/- and wild-type control mice received intratracheal administration of P.aerugniosa (Xen41) or LPS, with mice monitored using intravital imaging (IVIS). In addition, multiplex cytokine immunoassays, flow cytometry, multispectral analyses, histological staining were performed. Results: In this study, we found that Trap5-/- mice had impaired clearance of P. aeruginosa airway infection and reduced recruitment of immune cells (i.e. neutrophils and inflammatory macrophages). Trap5 knockdown using siRNA resulted in a decreased activation of the proinflammatory transcription factor NF-κB in reporter mice and a subsequent decrease of proinflammatory gene expression. Add-back experiments of enzymatically active TRAP5 to Trap5-/- mice restored immune cell recruitment and bacterial killing. In human CF lung tissue, TRAP5 of alveolar macrophages was detected in proximity to OPN to a higher degree than in normal lung tissue, indicating possible interactions. Discussion: Taken together, the findings of this study suggest a key role for TRAP5 in modulating airway inflammation. This could have bearing in diseases such as CF and COPD where excessive neutrophilic inflammation could be targeted by pharmacological inhibitors of TRAP5.


Subject(s)
Bacterial Infections , Cystic Fibrosis , Pneumonia , Pulmonary Disease, Chronic Obstructive , Mice , Humans , Animals , Tartrate-Resistant Acid Phosphatase/metabolism , Disease Models, Animal , Lung/pathology , Pneumonia/metabolism , Cystic Fibrosis/genetics , Cytokines/metabolism , Inflammation/metabolism , Bacterial Infections/metabolism , Mice, Knockout , Bacteria/metabolism , Pulmonary Disease, Chronic Obstructive/pathology
6.
EBioMedicine ; 83: 104229, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36027872

ABSTRACT

BACKGROUND: Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19. METHODS: We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed. FINDINGS: Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production. INTERPRETATION: Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments. FUNDING: CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.


Subject(s)
COVID-19 , Cytokines , Humans , Lung/pathology , SARS-CoV-2
7.
Front Immunol ; 13: 924244, 2022.
Article in English | MEDLINE | ID: mdl-35983043

ABSTRACT

Background: The mast cell-specific metalloprotease CPA3 has been given important roles in lung tissue homeostasis and disease pathogenesis. However, the dynamics and spatial distribution of mast cell CPA3 expression in lung diseases remain unknown. Methods: Using a histology-based approach for quantitative spatial decoding of mRNA and protein single cell, this study investigates the dynamics of CPA3 expression across mast cells residing in lungs from control subjects and patients with severe chronic obstructive pulmonary disease (COPD) or idiopathic lung fibrosis (IPF). Results: Mast cells in COPD lungs had an anatomically widespread increase of CPA3 mRNA (bronchioles p < 0.001, pulmonary vessels p < 0.01, and alveolar parenchyma p < 0.01) compared to controls, while granule-stored CPA3 protein was unaltered. IPF lungs had a significant upregulation of both mast cell density, CPA3 mRNA (p < 0.001) and protein (p < 0.05), in the fibrotic alveolar tissue. Spatial expression maps revealed altered mast cell mRNA/protein quotients in lung areas subjected to disease-relevant histopathological alterations. Elevated CPA3 mRNA also correlated to lung tissue eosinophils, CD3 T cells, and declined lung function. Single-cell RNA sequencing of bronchial mast cells confirmed CPA3 as a top expressed gene with potential links to both inflammatory and protective markers. Conclusion: This study shows that lung tissue mast cell populations in COPD and IPF lungs have spatially complex and markedly upregulated CPA3 expression profiles that correlate with immunopathological alterations and lung function. Given the proposed roles of CPA3 in tissue homeostasis, remodeling, and inflammation, these alterations are likely to have clinical consequences.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pulmonary Disease, Chronic Obstructive , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mast Cells/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , RNA, Messenger/metabolism
8.
J Innate Immun ; : 1-16, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35998572

ABSTRACT

Contrasting the antigen-presenting dendritic cells (DCs) in the conducting airways, the alveolar DC populations in human lungs have remained poorly investigated. Consequently, little is known about how alveolar DCs are altered in diseases such as chronic obstructive pulmonary disease (COPD). This study maps multiple tissue DC categories in the distal lung across COPD severities. Specifically, single-multiplex immunohistochemistry was applied to quantify langerin/CD207+, CD1a+, BDCA2+, and CD11c+ subsets in distal lung compartments from patients with COPD (GOLD stage I-IV) and never-smoking and smoking controls. In the alveolar parenchyma, increased numbers of CD1a+langerin- (p < 0.05) and BDCA-2+ DCs (p < 0.001) were observed in advanced COPD compared with controls. Alveolar CD11c+ DCs also increased in advanced COPD (p < 0.01). In small airways, langerin+ and BDCA-2+ DCs were also significantly increased. Contrasting the small airway DCs, most alveolar DC subsets frequently extended luminal protrusions. Importantly, alveolar and small airway langerin+ DCs in COPD lungs displayed site-specific marker profiles. Further, multiplex immunohistochemistry with single-cell quantification was used to specifically profile langerin DCs and reveal site-specific expression patterns of the maturation and activation markers S100, fascin, MHC2, and B7. Taken together, our results show that clinically advanced COPD is associated with increased levels of multiple alveolar DC populations exhibiting features of both adaptive and innate immunity phenotypes. This expansion is likely to contribute to the distal lung immunopathology in COPD patients.

9.
Front Pharmacol ; 13: 899469, 2022.
Article in English | MEDLINE | ID: mdl-35721132

ABSTRACT

Background and aim: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease causing irreparable scarring of lung tissue, with most patients succumbing rapidly after diagnosis. The mevalonate pathway, which is involved in the regulation of cell proliferation, survival, and motility, is targeted by the bisphosphonate zoledronic acid (ZA). The aim of this study was to assess the antifibrotic effects of ZA and to elucidate the mechanisms by which potential IPF treatment occurs. Methods: A series of in vitro and in vivo models were employed to identify the therapeutic potential of ZA in treating IPF. In vitro transwell assays were used to assess the ability of ZA to reduce fibrotic-related immune cell recruitment. Farnesyl diphosphate synthase (FDPS) was screened as a potential antifibrotic target using a bleomycin mouse model. FDPS-targeting siRNA and ZA were administered to mice following the onset of experimentally-induced lung fibrosis. Downstream analyses were conducted on murine lung tissues and lung fluids including 23-plex cytokine array, flow cytometry, histology, Western blotting, immunofluorescent staining, and PCR analysis. Results: In vitro administration of ZA reduced myofibroblast transition and blocked NF-κB signaling in macrophages leading to impaired immune cell recruitment in a transwell assay. FDPS-targeting siRNA administration significantly attenuated profibrotic cytokine production and lung damage in a murine lung fibrosis model. Furthermore, ZA treatment of mice with bleomycin-induced lung damage displayed decreased cytokine levels in the BALF, plasma, and lung tissue, resulting in less histologically visible fibrotic scarring. Bleomycin-induced upregulation of the ZA target, FDPS, was reduced in lung tissue and fibroblasts upon ZA treatment. Confirmatory increases in FDPS immunoreactivity was seen in human IPF resected lung samples compared to control tissue indicating potential translational value of the approach. Additionally, ZA polarized macrophages towards a less profibrotic phenotype contributing to decreased IPF pathogenesis. Conclusion: This study highlights ZA as an expedient and efficacious treatment option against IPF in a clinical setting.

10.
Respir Res ; 22(1): 158, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022896

ABSTRACT

BACKGROUND: RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. METHODS: IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. RESULTS: We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. CONCLUSION: These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Interleukin-17/metabolism , Interleukins/antagonists & inhibitors , Lung/drug effects , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Th17 Cells/drug effects , Adolescent , Adult , Aged , Animals , Asthma/immunology , Asthma/metabolism , Asthma/physiopathology , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Humans , Interleukins/metabolism , Lung/immunology , Lung/metabolism , Lung/physiopathology , Male , Mice, Inbred BALB C , Middle Aged , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyroglyphidae/immunology , Signal Transduction , Th17 Cells/immunology , Th17 Cells/metabolism , Young Adult , Interleukin-22
11.
Cells ; 10(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33546258

ABSTRACT

The mast cell granule metalloprotease CPA3 is proposed to have important tissue homeostatic functions. However, the basal CPA3 mRNA and protein expression among mast cell populations has remained poorly investigated. Using a novel histology-based methodology that yields quantitative data on mRNA and protein expression at a single-cell level, the present study maps CPA3 mRNA and protein throughout the MCT and MCTC populations in healthy skin, gut and lung tissues. MCTC cells had both a higher frequency of CPA3 protein-containing cells and a higher protein-staining intensity than the MCT population. Among the tissues, skin MCs had highest CPA3 protein intensity. The expression pattern at the mRNA level was reversed. Lung mast cells had the highest mean CPA3 mRNA staining. Intriguingly, the large alveolar MCT population, that lack CPA3 protein, had uniquely high CPA3 mRNA intensity. A broader multi-tissue RNA analysis confirmed the uniquely high CPA3 mRNA quantities in the lung and corroborated the dissociation between chymase and CPA3 at the mRNA level. Taken together, our novel data suggest a hitherto underestimated contribution of mucosal-like MCT to baseline CPA3 mRNA production. The functional consequence of this high constitutive expression now reveals an important area for further research.


Subject(s)
Carboxypeptidases/metabolism , Chymases/metabolism , Mast Cells/metabolism , RNA, Messenger/metabolism , Tryptases/metabolism , Humans
12.
Allergy ; 76(5): 1528-1538, 2021 05.
Article in English | MEDLINE | ID: mdl-32145088

ABSTRACT

BACKGROUND: Allergic rhinoconjunctivitis is a public health problem. Allergen Immunotherapy is an effective and safe treatment, that modifies the natural course of allergic disease and induces long-term tolerance. OBJECTIVE: To correlate basophil and antibody biomarkers of subcutaneous immunotherapy to clinical outcomes and cellular changes in target tissue. METHODS: Adults suffering from allergic rhinoconjunctivitis due to grass pollen allergy were randomized to receive subcutaneous immunotherapy (n = 18) or to an open control group (n = 6). Patients reported daily symptom and medication scores and weekly rhinitis related quality of life scores during four pollen seasons. Biomarkers were measured every 3 months for three years treatment and every 6 months in the follow-up year. Nasal and cutaneous allergen challenge tests were performed annually. Leukocyte subsets were assessed in nasal mucosa biopsies at baseline and after treatment. RESULTS: Subcutaneous immunotherapy led to a 447-fold decrease in basophil sensitivity during the first treatment year. This remained 100-fold lower than baseline during the 3 year-treatment period and 10-fold lower during the follow-up year (n = 18, P = .03). Decrease in basophil sensitivity after three weeks of treatment predicted long-term improvement in seasonal combined symptom and medication scores (á¿¥=-0.69, P = .0027) during three years of treatment. AUC of IgE-blocking factor correlated to nasal allergen challenge (á¿¥ = 0.63, P = .0012) and SPT (á¿¥ = 0.45, P = .03). Plasma cell numbers in the nasal mucosa increased during treatment (P = .02). CONCLUSION: Decrease in basophil sensitivity after three weeks of subcutaneous allergen immunotherapy predicted the clinical outcome of this treatment.


Subject(s)
Basophils , Rhinitis, Allergic, Seasonal , Adult , Allergens , Desensitization, Immunologic , Humans , Immunoglobulin E , Poaceae , Pollen , Quality of Life , Rhinitis, Allergic, Seasonal/therapy , Treatment Outcome
13.
Cancers (Basel) ; 12(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218184

ABSTRACT

Nasopharyngeal cancer (NPC) features intralesional immune cells, but data are lacking on presence/distribution of T-cells and dendritic cells (DCs). Based on intralesional distribution of lymphocytes, a series of NPC biopsies (n = 48) were classified into "inflamed", "excluded", and "deserted" phenotypes. In addition, CD8+ T-cells and CD207+ DCs were quantified. The data were analyzed in relation to Epstein-Barr virus-encoded small RNA (EBER), Epstein-Barr virus (EBV) DNA, and survival. Separately, data on gene expression from a public database were analyzed. 61.7% of NPC lesions were "inflamed", 29.8% were "excluded", and 8.5% were "deserted". While CD8+ cells were present in cancer cell areas and in surrounding stroma, CD207+ cells were observed largely in cancer cell areas. High CD8+ T-cell presence was associated with EBV+ disease, but no such pattern was observed for CD207+ DCs. There was a difference in disease-free survival in favor of "inflamed" over "excluded" NPC. Gene expression analysis revealed differences between NPC and control tissue (e.g., with regard to interferon activity) as well as between subgroups of NPC based on CD8 expression (high vs. low). In conclusion, NPC lesions are heterogeneous with regard to distribution of CD8+ T-cells and CD207+ DCs. NPC can be classified into immune phenotypes that carry prognostic information. CD207+ DCs may represent a target for immunotherapy with potential to facilitate the antigen cross-presentation necessary to execute cytotoxic T-lymphocyte responses.

14.
Eur Clin Respir J ; 7(1): 1736934, 2020.
Article in English | MEDLINE | ID: mdl-32284828

ABSTRACT

Background: The BREATHE study is a cross-sectional study of real-life patients with asthma and/or COPD in Denmark and Sweden aiming to increase the knowledge across severities and combinations of obstructive airway disease. Design: Patients with suspicion of asthma and/or COPD and healthy controls were invited to participate in the study and had a standard evaluation performed consisting of questionnaires, physical examination, FeNO and lung function, mannitol provocation test, allergy test, and collection of sputum and blood samples. A subgroup of patients and healthy controls had a bronchoscopy performed with a collection of airway samples. Results: The study population consisted of 1403 patients with obstructive airway disease (859 with asthma, 271 with COPD, 126 with concurrent asthma and COPD, 147 with other), and 89 healthy controls (smokers and non-smokers). Of patients with asthma, 54% had moderate-to-severe disease and 46% had mild disease. In patients with COPD, 82% had groups A and B, whereas 18% had groups C and D classified disease. Patients with asthma more frequently had childhood asthma, atopic dermatitis, and allergic rhinitis, compared to patients with COPD, asthma + COPD and Other, whereas FeNO levels were higher in patients with asthma and asthma + COPD compared to COPD and Other (18 ppb and 16 ppb vs 12.5 ppb and 14 ppb, p < 0.001). Patients with asthma, asthma + COPD and Other had higher sputum eosinophilia (1.5%, 1.5%, 1.2% vs 0.75%, respectively, p < 0.001) but lower sputum neutrophilia (39.3, 43.5%, 40.8% vs 66.8%, p < 0.001) compared to patients with COPD. Conclusions: The BREATHE study provides a unique database and biobank with clinical information and samples from 1403 real-life patients with asthma, COPD, and overlap representing different severities of the diseases. This research platform is highly relevant for disease phenotype- and biomarker studies aiming to describe a broad spectrum of obstructive airway diseases.

15.
Eur Respir J ; 55(5)2020 05.
Article in English | MEDLINE | ID: mdl-32060064

ABSTRACT

Although elevated blood or sputum eosinophils are present in many patients with COPD, uncertainties remain regarding the anatomical distribution pattern of lung-infiltrating eosinophils. Basophils have remained virtually unexplored in COPD. This study mapped tissue-infiltrating eosinophils, basophils and eosinophil-promoting immune mechanisms in COPD-affected lungs.Surgical lung tissue and biopsies from major anatomical compartments were obtained from COPD patients with severity grades Global Initiative for Chronic Obstructive Lung Disease stages I-IV; never-smokers/smokers served as controls. Automated immunohistochemistry and in situ hybridisation identified immune cells, the type 2 immunity marker GATA3 and eotaxins (CCL11, CCL24).Eosinophils and basophils were present in all anatomical compartments of COPD-affected lungs and increased significantly in very severe COPD. The eosinophilia was strikingly patchy, and focal eosinophil-rich microenvironments were spatially linked with GATA3+ cells, including type 2 helper T-cell lymphocytes and type 2 innate lymphoid cells. A similarly localised and interleukin-33/ST2-dependent eosinophilia was demonstrated in influenza-infected mice. Both mice and patients displayed spatially confined eotaxin signatures with CCL11+ fibroblasts and CCL24+ macrophages.In addition to identifying tissue basophilia as a novel feature of advanced COPD, the identification of spatially confined eosinophil-rich type 2 microenvironments represents a novel type of heterogeneity in the immunopathology of COPD that is likely to have implications for personalised treatment.


Subject(s)
Basophils/immunology , Eosinophils/immunology , Macrophages/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Eosinophilia/etiology , Adult , Aged , Animals , Biomarkers , Chemokine CCL11/immunology , Chemokine CCL24/immunology , Female , GATA3 Transcription Factor/immunology , Humans , Immunity, Innate , Male , Mice , Middle Aged , Smokers , Young Adult
16.
Sci Rep ; 10(1): 754, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31937899

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Rep ; 9(1): 15566, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664154

ABSTRACT

Osteopontin (OPN) plays a role in inflammation via recruitment of neutrophils and tissue remodeling. In this study, we investigated the distribution of OPN-expressing cells in the airway epithelium of normal lung tissue and that from patients with chronic obstructive pulmonary disease (COPD). OPN was detected on the epithelial cell surface of small airways and in scattered cells within the epithelial cell layer. Staining revealed higher OPN concentrations in tissue showing moderate to severe COPD compared to that in controls. In addition, OPN expression was confined to goblet and club cells, and was absent from ciliated and basal cells as detected via immunohistochemistry. However, OPN expression was up-regulated in submerged basal cells cultures exposed to cigarette smoke (CS) extract. Cell fractioning of air-liquid interface cultures revealed increased OPN production from basal compartment cells compared to that in luminal fraction cells. Furthermore, both constitutive and CS-induced expression of OPN decreased during differentiation. In contrast, cultures stimulated with interleukin (IL)-13 to promote goblet cell hyperplasia showed increased OPN production in response to CS exposure. These results indicate that the cellular composition of the airway epithelium plays an important role in OPN expression and that these levels may reflect disease endotypes in COPD.


Subject(s)
Airway Remodeling/genetics , Inflammation/genetics , Osteopontin/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Adult , Airway Obstruction/genetics , Airway Obstruction/pathology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Cigarette Smoking/adverse effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Expression Regulation/genetics , Humans , Inflammation/chemically induced , Inflammation/pathology , Interleukin-13/genetics , Lung/growth & development , Lung/pathology , Male , Neutrophils/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/drug effects , Smoke/adverse effects , Smoking/adverse effects
18.
J Allergy Clin Immunol ; 144(6): 1624-1637.e10, 2019 12.
Article in English | MEDLINE | ID: mdl-31562870

ABSTRACT

BACKGROUND: Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations. OBJECTIVE: We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations. METHODS: Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype. RESULTS: We show that lung IL-33 drives inflammation and remodeling beyond the type 2 response classically associated with IL-33 signaling. IL-33 blockade with an IL-33 neutralizing antibody normalized established inflammation and improved remodeling of both the lung epithelium and lung parenchyma. Specifically, IL-33 blockade normalized persisting and exacerbating inflammatory end points, including eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration. Importantly, we identified a key role for IL-33 in driving lung remodeling because anti-IL-33 also re-established the presence of ciliated cells over mucus-producing cells and decreased myofibroblast numbers, even in the context of continuous allergen exposure, resulting in improved lung function. CONCLUSION: Overall, this study shows that increased IL-33 levels drive a self-perpetuating amplification loop that maintains the lung in a state of lasting inflammation and remodeled tissue primed for exacerbations. Thus IL-33 blockade might ameliorate symptoms and prevent exacerbations by quelling persistent inflammation and airway remodeling.


Subject(s)
Airway Remodeling/immunology , Asthma/immunology , Interleukin-33/immunology , Lung/immunology , Pyroglyphidae/immunology , Signal Transduction/immunology , Animals , Asthma/chemically induced , Asthma/pathology , Asthma/therapy , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Interleukin-33/antagonists & inhibitors , Lung/pathology , Mice , Mice, Transgenic , Th2 Cells/immunology , Th2 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...