Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426902

ABSTRACT

Current methods to develop surfactant phase diagrams are time-intensive and fail to capture the kinetics of phase evolution. Here, the design and performance of a quantitative swelling technique to study the dynamic phase behavior of surfactants are described. The instrument combines cross-polarized optical and short-wave infrared imaging to enable high-resolution, high-throughput, and in situ identification of phases and water compositions. Data across the entire composition spectrum for the dynamics and phase evolution of a binary aqueous non-ionic surfactant solution at two isotherms are presented. This instrument provides pathways to develop non-equilibrium phase diagrams of surfactant systems-critical to predicting the outcomes of formulation and processing. It can be applied to study time-dependent material relationships across a diverse range of materials and processes, including the dissolution of surfactant droplets and the drying of aqueous polymer films.

2.
Soft Matter ; 20(15): 3299-3312, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38529796

ABSTRACT

Material relationships at low temperatures were determined for concentrated surfactant solutions using a combination of rheological experiments, cross-polarized microscopy, calorimetry, and small angle X-ray scattering. A lamellar structured 70 wt% solution of sodium laureth sulfate in water was used as a model system. At cold temperatures (5 °C and 10 °C), the formation of surfactant crystals resulted in extremely high viscosity. The bulk flow behavior of multi-lamellar vesicles (20 °C) and focal conic defects (90 °C) in the lamellar phase was similar. Shear-induced crystallization at temperatures higher than the equilibrium crystallization temperature range resulted in an unusual complex viscosity peak. The effects of processing-relevant parameters including temperature, cooling time, and applied shear were investigated. Knowledge of key low-temperature structure-property-processing relationships for concentrated feedstocks is essential for the sustainable design and manufacturing of surfactant-based consumer products for applications such as cold-water laundry.

3.
Soft Matter ; 20(4): 856-868, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38170854

ABSTRACT

While significant progress has been made in the modeling and simulation of uniform fiber suspensions, no existing model has been validated for industrially-relevant concentrated suspensions containing fibers of multiple aspect ratios. In the present work, we investigate bi-disperse suspensions with two fiber populations in varying aspect ratios in a steady shear flow using direct numerical simulations. Moreover, we measure the suspension viscosity by creating a controlled length bidispersity for nylon fibers suspended in a Newtonian fluid. The results showed good agreement between the experimentally measured and numerically predicted viscosity for bi-disperse suspensions. The ratio between the aspect ratio of large to small fibers (size ratio) and the volume fraction of large fibers (composition) in bi-disperse systems strongly affected the rheological behavior of the suspension. The increment of relative viscosity associated with size ratio and composition can be explained by the decrease in the maximum flowable limit or jamming volume fraction. Moreover, the relative viscosity of bi-disperse suspensions collapses, when plotted against the reduced volume fraction, demonstrating the controlling influence of the jamming fraction in bi-disperse fiber suspensions.

4.
Soft Matter ; 19(5): 882-891, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36645088

ABSTRACT

Concentrated suspensions of particles at volume fractions (ϕ) ≥ 0.5 often exhibit complex rheological behavior, transitioning from shear thinning to shear thickening as the shear stress or shear rate is increased. These suspensions can be extruded to form 3D structures, with non-adsorbing polymers often added as rheology modifiers to improve printability. Understanding how non-adsorbing polymers affect the suspension rheology, particularly the onset of shear thickening, is critical to the design of particle inks that will extrude uniformly. In this work, we examine the rheology of concentrated aqueous suspensions of colloidal alumina particles and the effects of adding non-adsorbing polyvinylpyrrolidone (PVP). First, we show that suspensions with ϕalumina = 0.560-0.575 exhibited discontinuous shear thickening (DST), where the viscosity increased by up to two orders of magnitude above an onset stress (τmin). Increasing ϕalumina from 0.550 to 0.575 increased the viscosity and yield stress in the shear thinning regime and decreased τmin. Next, PVP was added at concentrations within the dilute and semi-dilute non-entangled regimes of polymer conformation (ϕPVP = 0.005-0.050) to suspensions with constant ϕalumina = 0.550. DST was observed in all cases and increasing ϕPVP increased the viscosity and yield stress. Interestingly, increasing ϕPVP also increased τmin. We posit that the free PVP chains act as lubricants between alumina particles, increasing the stress needed to induce thickening. Finally, we demonstrate through direct comparisons of suspensions with and without PVP how non-adsorbing polymer addition can extend the extrusion processing window due to the increase in τmin.

5.
Langmuir ; 38(14): 4276-4286, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35357182

ABSTRACT

Spontaneous emulsion behavior has been difficult to predict and could be influenced by many variables including salinity, temperature, and chemical composition of the oil and surfactant. In this work, the hydrophilic-lipophilic difference (HLD) framework was used to predict the formation of spontaneous emulsions using a mixture of Span-80 and SLES surfactants. The spontaneity and emulsion behavior of different systems were modeled by estimating the HLDmix. The influence of surfactant ratio, salinity, and oil type was investigated. Spontaneous emulsification could only be observed when the HLDmix was between -0.96 and 1.04. Within this range, a negative HLDmix resulted in a greater spontaneity to form o/w emulsion, and a w/o emulsion was more likely to form when the HLDmix was positive. When the HLDmix was close to 0 (between -0.22 and 0.56 in our systems), emulsions were formed in both the oil and aqueous phases with high spontaneity. A combined effect of ultralow interfacial tension, Span-80 micelle swelling, and interfacial turbulence due to Marangoni effects is likely the main mechanism of the spontaneous emulsification observed in this study. A synergistic reduction in interfacial tension was observed between Span-80 and SLES (<1 mN/m). When the HLD of the system was close to 0, a bicontinuous emulsion phase was formed at the oil-water interface. The bicontinuous emulsion broke-up over time due to the ultralow interfacial tension and interfacial turbulence, forming dispersed oil and water droplets. Results from this work provide a practical method to suggest what surfactant composition, salinity, and oil type could promote (or eliminate) the conditions favorable for spontaneous emulsification.

6.
Biotechnol Prog ; 37(6): e3216, 2021 11.
Article in English | MEDLINE | ID: mdl-34590438

ABSTRACT

The measurement of yield stress and shear thinning flow behavior of slurries formed from unpretreated corn stover at solids loadings of 100-300 g/L provides a key metric for the ability to move, pump, and mix this lignocellulosic slurry, particularly since corn stover slurries represent a major potential feedstock for biorefineries. This study compared static yield stress values and flow hysteresis of corn stover slurries of 100, 150, 200, 250, and 300 g/L, after these slurries were formed by adding pellets to a cellulase enzyme solution (Celluclast 1.5 L) in a fed-batch manner. A rotational rheometer was used to quantitate relative yield stress and its dependence on processing history at insoluble solids concentrations of 4%-21% (wt/vol). Key findings confirmed previous observations that yield stress increases with solids loadings and reaches ~3000 Pa at 25% (wt/vol) solids concentration compared to ~200 Pa after enzyme liquefaction. While optimization of slurry forming (i.e., liquefaction) conditions remains to be done, metrics for quantifying liquefaction extent are needed. The method for obtaining comparative metrics is demonstrated here and shows that the yield stress, shear thinning and shear thickening flow behaviors of enzyme liquefied corn stover slurries can be analyzed using a wide-gap rheometry setup with relative measuring geometries to mimic the conditions that may exist in a mixing vessel of a bioreactor while applying controlled and precise levels of strain.


Subject(s)
Biomass , Rheology/methods , Zea mays , Bioreactors , Cellulases/metabolism , Zea mays/chemistry , Zea mays/metabolism
7.
Bioresour Technol ; 341: 125773, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34419879

ABSTRACT

The movement of solid material into and between unit operations within a biorefinery is a bottleneck in reaching design capacity, with formation of biomass slurries needed to introduce feedstock. Corn stover slurries have been achieved from dilute acid, pretreated materials resulting in slurry concentrations of up to about 150 g/L, above which flowability is compromised. We report a new strategy to liquefy corn stover at higher solids concentration (300 g/L) by initially cooking it with the enzyme mimetic maleic acid at 40 mM and 150 °C. This is followed by 6 h of enzymatic modification at 1 FPU (2.2 mg protein)/g solids, resulting in a yield stress of 171 Pa after 6 h and 58 Pa in 48 h compared to 6806 Pa for untreated stover. Mimetic treatment of corn stover pellets minimizes the inhibitory effect of xylo-oligomers on hydrolytic enzymes. This strategy allows for the delivery of solid lignocellulosic slurry into a pretreatment reactor by pumping, improving operability of a biorefinery.


Subject(s)
Acids , Zea mays , Biomass , Hydrolysis
8.
Langmuir ; 37(29): 8866-8875, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34278800

ABSTRACT

Spontaneous emulsification of toluene with nonylphenol polyethoxylate (NPE) and sodium dodecylbenzenesulfonate (SDBS) surfactants in saltwater environments was studied. NaCl promoted the spontaneous emulsification of an otherwise non-spontaneous SDBS-toluene system. Dynamic light scattering and turbidity indicated that spontaneity increased with NaCl concentration. The mechanism of spontaneous emulsification was dependent on surfactant type; NPE emulsified via micelle swelling, and SDBS emulsified via nucleation and growth. Hydrophilic lipophilic difference (HLD) calculations were used to model spontaneous emulsification and spontaneity. As HLD approached zero, conditions became more favorable for spontaneous emulsification. Between HLD values of -2.4 and -2.05, samples transitioned from non-spontaneous to spontaneous. This study aids in predicting spontaneous emulsion formation in saltwater environments for applications in nanoemulsion formation and wastewater remediation.

9.
ACS Appl Mater Interfaces ; 13(10): 12472-12482, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33656333

ABSTRACT

CO2 and O2 gas permeability are paramount concerns in food packaging. Here, the permeability of cellulose nanocrystals (CNCs) and polyvinyl alcohol (PVA) coatings was explored as it relates to varied CNC content. Specifically, this work focuses on the role of PVA in rheology and barrier performance of the CNC films. Results show that shear-casted CNC films are transparent and have a high-order parameter, which is attributed to the shear-thinning behavior of the CNCs. The barrier performance of the CNC films improved because of the synergistic effect of having both alignment of CNCs and a lower free volume. The CNC-PVA films exhibited excellent barrier performance as compared to traditional engineered polymers, even much higher than high barrier ethylene-vinyl alcohol copolymer films. Furthermore, the moisture sensitivity of the films was greatly diminished with the addition of PVA. Overall, the results show applicability of CNC-PVA coating formulations for high barrier packaging applications.

10.
Langmuir ; 36(26): 7517-7527, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32521160

ABSTRACT

Spontaneous emulsification of toluene, xylenes, cyclohexane, and mineral oil in a nonionic nonylphenol polyethoxylate surfactant solution was investigated by visual observations coupled with dynamic light scatting measurements and interfacial tensiometry. For water-soluble oils, nanoscale emulsions formed spontaneously by diffusion of oil molecules into the aqueous surfactant solutions and subsequent swelling of surfactant micelles with oil. Micelle swelling rates were quantified to assess system spontaneity, revealing that oil solubility in water was directly correlated to the spontaneity of the emulsion (toluene > xylenes > cyclohexane). When experiments were intentionally designed to create surfactant concentration gradients, Marangoni flows were found to enhance spontaneity. Despite their spontaneous formation, emulsion stability was limited over the course of 40 days by Ostwald ripening followed by creaming and evaporation. These results provide insights on the likelihood of nanoemulsion formation and persistence in oily wastewater as the components in this study are present in many wastewater systems.

11.
J Colloid Interface Sci ; 529: 224-233, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29902660

ABSTRACT

Through several complementary experiments, an investigation of the bulk and interfacial flows that emerged during the coalescence of two water-in-oil droplets with asymmetric compositional properties was performed. By adding surfactant to one of the coalescing droplets and leaving the other surfactant-free, a strong interfacial tension gradient (i.e., solutal Marangoni) driving energy between the merging droplets generated pronounced internal mixing. The contributions of two distinct types of surfactant, anionic ammonium lauryl sulfate (ALS) and cationic cetyltrimethylammonium bromide (CTAB) on the rate of coalescence bridge expansion and on the generation of opposing flows during coalescence were investigated. All coalescence experiments supported the power law relation between the radius of the expanding connective liquid bridge and time, rb ∝ t1/2. However, the presence of surfactant decreased the magnitude of the prefactor in this relationship due to induced interfacial solutal Marangoni convection. Experiments showed that packing efficiency, diffusivity, and bulk concentration of the selected surfactant are vital in solutal Marangoni convection and thus the degree and timescale of internal mixing between merging droplets, which has yet to be adequately discussed within the literature. Denser interfacial packing efficiency and lower diffusivity of CTAB produced stronger opposing bulk and interfacial flow as well as greater bulk mixing. A discussion of how optimized surfactant selection and solutal Marangoni convection can be used for passively inducing convective mixing between coalescing drops in microfluidic channels when viscosity modulation is not feasible is provided.

12.
Gels ; 3(4)2017 Nov 25.
Article in English | MEDLINE | ID: mdl-30920541

ABSTRACT

This research article will describe the design and use of polyelectrolyte hydrogel particles as internal curing agents in concrete and present new results on relevant hydrogel-ion interactions. When incorporated into concrete, hydrogel particles release their stored water to fuel the curing reaction, resulting in reduced volumetric shrinkage and cracking and thus increasing concrete service life. The hydrogel's swelling performance and mechanical properties are strongly sensitive to multivalent cations that are naturally present in concrete mixtures, including calcium and aluminum. Model poly(acrylic acid(AA)-acrylamide(AM))-based hydrogel particles with different chemical compositions (AA:AM monomer ratio) were synthesized and immersed in sodium, calcium, and aluminum salt solutions. The presence of multivalent cations resulted in decreased swelling capacity and altered swelling kinetics to the point where some hydrogel compositions displayed rapid deswelling behavior and the formation of a mechanically stiff shell. Interestingly, when incorporated into mortar, hydrogel particles reduced mixture shrinkage while encouraging the formation of specific inorganic phases (calcium hydroxide and calcium silicate hydrate) within the void space previously occupied by the swollen particle.

13.
J Colloid Interface Sci ; 459: 107-114, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26275503

ABSTRACT

Lignopolymers are a new class of polymer additives with the capability to be used as dispersants in cementitious pastes. Made with kraft lignin cores and grafted polymer side-chains, the custom-synthesized lignopolymers were examined in terms of the molecular architecture for viscosity reducing potential in inert model suspensions. Lignin-poly(acrylic acid) (LPAA) and lignin-polyacrylamide (LPAm) have been found to vary the rheology of magnesium oxide (MgO) suspensions based on differences in chain architecture and particle-polymer interactions. A commercial comb-polymer polycarboxylate ester was compared to LPAA and LPAm at 2.7 mg/mL, a typical dosage for cement admixtures, as well as 0.25mg/mL. It was found that LPAm was a more effective viscosity reducer than both LPAA and the commercial additive at low concentrations, which was attributed to greater adsorption on the MgO particle surface and increased steric dispersion from PAm side-chain extension. The influence of chain adsorption and grafted side-chain molecular weight on rheology was also tested.


Subject(s)
Acrylic Resins/chemistry , Lignin/chemistry , Magnesium Oxide/chemistry , Suspensions/chemistry , Viscosity
14.
ACS Macro Lett ; 3(10): 1069-1073, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-35610794

ABSTRACT

The fracture-healing behavior of model physically associating triblock copolymer gels was investigated with experiments coupling shear rheometry and particle tracking flow visualization. Fractured gels were allowed to rest for specific time durations, and the extent of strength recovered during the resting time was quantified as a function of temperature (20-28 °C) and gel concentration (5-6 vol %). Measured times for full strength recovery were an order of magnitude greater than characteristic relaxation times of the system. The Arrhenius activation energy for post-fracture strength recovery was found to be greater than the activation energy associated with stress relaxation, most likely due to the entropic barrier related to the healing mechanism of dangling chain reassociation with network junctions.

15.
Int J Pharm ; 457(1): 118-23, 2013 Nov 30.
Article in English | MEDLINE | ID: mdl-24095816

ABSTRACT

The mechanical response of alginate rafts formed by mixing liquid alginate antacid medication (Gaviscon Extra Strength Liquid Antacid) with acidic solutions was investigated by deforming isolated rafts in a shear rheometer. As rafts were deformed to varying magnitudes of applied strain, rheological parameters were identified and related to the overall strength, durability, and recoverability of rafts formed at different pH (1.1-1.7) and aging conditions (0.5-4 h). Rafts formed in the lowest acidity solutions (pH 1.4, 1.7) were elastically weak ( G'0 = 60 , 42 Pa for un-aged raft) yet maintained their elasticity during applied shear deformation to large values of strain (γc∼90%, 50%, where G'≈G″), and displayed a low-to-moderate level of elastic recovery following large-strain deformation. Rafts formed in the highest acidity solution had the greatest strength ( G'0 = 500 Pa for un-aged raft and 21.5 kPa for rafts after 0.5 h of aging), reduced durability (γc∼2.5%, independent of aging), and displayed the greatest recoverability. A trade-off existed between un-aged raft strength and durability while recovery was dependent on durability, solution pH, and age. Rheometry-based evaluations of alginate rafts could be used for the informed design of future gastric retention and antacid products.


Subject(s)
Alginates/chemistry , Aluminum Hydroxide/chemistry , Antacids/chemistry , Silicic Acid/chemistry , Sodium Bicarbonate/chemistry , Drug Combinations , Hydrogen-Ion Concentration , Rheology , Shear Strength
16.
J Colloid Interface Sci ; 377(1): 442-9, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22520210

ABSTRACT

A new measurement method is suggested that is capable of probing the shear and dilational interfacial rheological responses of small droplets, those of size comparable to real emulsion applications. Freely suspended aqueous droplets containing surfactant and non-surface-active tracer particles are transported through a rectangular microchannel by the plane Poiseuille flow of the continuous oil phase. Optical microscopy and high-speed imaging record the shape and internal circulation dynamics of the droplets. Measured circulation velocities are coupled with theoretical descriptions of the droplet dynamics in order to determine the viscous (Boussinesq) and elastic (Marangoni) interfacial effects. A new Marangoni-induced stagnation point is identified theoretically and observed experimentally. Particle velocimetry at only two points (including gradients) in the droplet is sufficient to determine the amplitudes of the dilational and shear responses. We investigate the sensitivity for measuring interfacial properties and compare results from droplets stabilized by a small-molecule surfactant (butanol) and those stabilized by relatively large block copolymer molecules. Future increased availability of shear and dilational interfacial rheological properties is anticipated to lead to improved rules of thumb for emulsion preparation, stabilization, and general practice.


Subject(s)
Butanols/chemistry , Surface-Active Agents/chemistry , Particle Size , Rheology , Surface Properties
17.
Langmuir ; 28(9): 4472-8, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22300309

ABSTRACT

Model physically associating gels deformed in shear over a wide range of reduced rates displayed evidence of strain localization. The nonlinear stress responses and inhomogeneous velocity profiles observed during shear rheometry coupled with particle tracking velocimetry were associated with the occurrence of rate-dependent banding and fracture-like responses in the gel. Scaling law analysis from traditional sliding friction studies suggests that, at the molecular level, deformation is confined to a shear zone with thickness comparable to the mesh size of the gel, the smallest structurally relevant length scale in the gel.

18.
Biomacromolecules ; 11(5): 1358-63, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20392048

ABSTRACT

Strain-stiffening behavior common to biopolymer networks is difficult to reproduce in synthetic networks. Physically associating synthetic polymer networks can be an exception to this rule and can demonstrate strain-stiffening behavior at relatively low values of strain. Here, the stiffening behavior of model elastic networks of physically associating triblock copolymers is characterized by shear rheometry. Experiments demonstrate a clear correlation between network structure and strain-stiffening behavior. Stiffening is accurately captured by a constitutive model with a single fitting parameter related to the midblock length. The same model is also effective for describing the stiffening of actin, collagen, and other biopolymer networks. Our synthetic polymer networks could be useful model systems for biological materials due to (1) the observed similarity in strain-stiffening behavior, which can be quantified and related to network structure, and (2) the tunable structure of the physically associating network, which can be manipulated to yield a desired response.


Subject(s)
Biopolymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...