Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Lancet Digit Health ; 6(3): e211-e221, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395541

ABSTRACT

The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.


Subject(s)
Benchmarking , Longevity , Humans , Male , Female , Brain/diagnostic imaging , Models, Statistical , Algorithms
2.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38076938

ABSTRACT

We present an empirically benchmarked framework for sex-specific normative modeling of brain morphometry that can inform about the biological and behavioral significance of deviations from typical age-related neuroanatomical changes and support future study designs. This framework was developed using regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The Multivariate Factorial Polynomial Regression (MFPR) emerged as the preferred algorithm optimized using nonlinear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins, and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3,000 study participants. The model and scripts described here are freely available through CentileBrain (https://centilebrain.org/).

3.
Schizophr Res ; 254: 190-198, 2023 04.
Article in English | MEDLINE | ID: mdl-36921404

ABSTRACT

BACKGROUND AND HYPOTHESIS: Mentalizing impairment in schizophrenia has been linked to altered neural responses. This study aimed to replicate previous findings of altered activation of the mentalizing network in schizophrenia and investigate its possible association with impaired domain-general cognition. STUDY DESIGN: We analyzed imaging data from two large multi-centric German studies including 64 patients, 64 matched controls and a separate cohort of 300 healthy subjects, as well as an independent Australian study including 46 patients and 61 controls. All subjects underwent functional magnetic resonance imaging while performing the same affective mentalizing task and completed a cognitive assessment battery. Group differences in activation of the mentalizing network were assessed by classical as well as Bayesian two-sample t-tests. Multiple regression analysis was performed to investigate effects of neurocognitive measures on activation of the mentalizing network. STUDY RESULTS: We found no significant group differences in activation of the mentalizing network. Bayes factors indicate that these results provide genuine evidence for the null hypothesis. We found a positive association between verbal intelligence and activation of the medial prefrontal cortex, a key region of the mentalizing network, in three independent samples. Finally, individuals with low verbal intelligence showed altered activation in areas previously implicated in mentalizing dysfunction in schizophrenia. CONCLUSIONS: Mentalizing activation in patients with schizophrenia might not differ compared to large well-matched groups of healthy controls. Verbal intelligence is an important confounding variable in group comparisons, which should be considered in future studies of the neural correlates of mentalizing dysfunction in schizophrenia.


Subject(s)
Mentalization , Schizophrenia , Theory of Mind , Humans , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Bayes Theorem , Theory of Mind/physiology , Australia , Intelligence , Magnetic Resonance Imaging
4.
Front Neurosci ; 17: 1025428, 2023.
Article in English | MEDLINE | ID: mdl-36845440

ABSTRACT

Dynamic interactions between brain regions, either during rest or performance of cognitive tasks, have been studied extensively using a wide variance of methods. Although some of these methods allow elegant mathematical interpretations of the data, they can easily become computationally expensive or difficult to interpret and compare between subjects or groups. Here, we propose an intuitive and computationally efficient method to measure dynamic reconfiguration of brain regions, also termed flexibility. Our flexibility measure is defined in relation to an a-priori set of biologically plausible brain modules (or networks) and does not rely on a stochastic data-driven module estimation, which, in turn, minimizes computational burden. The change of affiliation of brain regions over time with respect to these a-priori template modules is used as an indicator of brain network flexibility. We demonstrate that our proposed method yields highly similar patterns of whole-brain network reconfiguration (i.e., flexibility) during a working memory task as compared to a previous study that uses a data-driven, but computationally more expensive method. This result illustrates that the use of a fixed modular framework allows for valid, yet more efficient estimation of whole-brain flexibility, while the method additionally supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses restricted to biologically plausible brain networks.

5.
Psychol Med ; 53(9): 4139-4151, 2023 07.
Article in English | MEDLINE | ID: mdl-35393001

ABSTRACT

BACKGROUND: Aberrant brain connectivity during emotional processing, especially within the fronto-limbic pathway, is one of the hallmarks of major depressive disorder (MDD). However, the methodological heterogeneity of previous studies made it difficult to determine the functional and etiological implications of specific alterations in brain connectivity. We previously reported alterations in psychophysiological interaction measures during emotional face processing, distinguishing depressive pathology from at-risk/resilient and healthy states. Here, we extended these findings by effective connectivity analyses in the same sample to establish a refined neural model of emotion processing in depression. METHODS: Thirty-seven patients with MDD, 45 first-degree relatives of patients with MDD and 97 healthy controls performed a face-matching task during functional magnetic resonance imaging. We used dynamic causal modeling to estimate task-dependent effective connectivity at the subject level. Parametric empirical Bayes was performed to quantify group differences in effective connectivity. RESULTS: MDD patients showed decreased effective connectivity from the left amygdala and left lateral prefrontal cortex to the fusiform gyrus compared to relatives and controls, whereas patients and relatives showed decreased connectivity from the right orbitofrontal cortex to the left insula and from the left orbitofrontal cortex to the right fusiform gyrus compared to controls. Relatives showed increased connectivity from the anterior cingulate cortex to the left dorsolateral prefrontal cortex compared to patients and controls. CONCLUSIONS: Our results suggest that the depressive state alters top-down control of higher visual regions during face processing. Alterations in connectivity within the cognitive control network present potential risk or resilience mechanisms.


Subject(s)
Depressive Disorder, Major , Facial Recognition , Humans , Depressive Disorder, Major/diagnostic imaging , Depression , Bayes Theorem , Brain Mapping , Brain , Magnetic Resonance Imaging
6.
Mol Psychiatry ; 27(11): 4464-4473, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948661

ABSTRACT

Common variation in the gene encoding the neuron-specific RNA splicing factor RNA Binding Fox-1 Homolog 1 (RBFOX1) has been identified as a risk factor for several psychiatric conditions, and rare genetic variants have been found causal for autism spectrum disorder (ASD). Here, we explored the genetic landscape of RBFOX1 more deeply, integrating evidence from existing and new human studies as well as studies in Rbfox1 knockout mice. Mining existing data from large-scale studies of human common genetic variants, we confirmed gene-based and genome-wide association of RBFOX1 with risk tolerance, major depressive disorder and schizophrenia. Data on six mental disorders revealed copy number losses and gains to be more frequent in ASD cases than in controls. Consistently, RBFOX1 expression appeared decreased in post-mortem frontal and temporal cortices of individuals with ASD and prefrontal cortex of individuals with schizophrenia. Brain-functional MRI studies demonstrated that carriers of a common RBFOX1 variant, rs6500744, displayed increased neural reactivity to emotional stimuli, reduced prefrontal processing during cognitive control, and enhanced fear expression after fear conditioning, going along with increased avoidance behaviour. Investigating Rbfox1 neuron-specific knockout mice allowed us to further specify the role of this gene in behaviour. The model was characterised by pronounced hyperactivity, stereotyped behaviour, impairments in fear acquisition and extinction, reduced social interest, and lack of aggression; it provides excellent construct and face validity as an animal model of ASD. In conclusion, convergent translational evidence shows that common variants in RBFOX1 are associated with a broad spectrum of psychiatric traits and disorders, while rare genetic variation seems to expose to early-onset neurodevelopmental psychiatric disorders with and without developmental delay like ASD, in particular. Studying the pleiotropic nature of RBFOX1 can profoundly enhance our understanding of mental disorder vulnerability.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Mental Disorders , Animals , Mice , Humans , Autism Spectrum Disorder/genetics , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Mental Disorders/genetics , Mice, Knockout , RNA Splicing Factors/genetics
7.
Hum Brain Mapp ; 43(9): 2727-2742, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35305030

ABSTRACT

The reproducibility crisis in neuroimaging has led to an increased demand for standardized data processing workflows. Within the ENIGMA consortium, we developed HALFpipe (Harmonized Analysis of Functional MRI pipeline), an open-source, containerized, user-friendly tool that facilitates reproducible analysis of task-based and resting-state fMRI data through uniform application of preprocessing, quality assessment, single-subject feature extraction, and group-level statistics. It provides state-of-the-art preprocessing using fMRIPrep without the requirement for input data in Brain Imaging Data Structure (BIDS) format. HALFpipe extends the functionality of fMRIPrep with additional preprocessing steps, which include spatial smoothing, grand mean scaling, temporal filtering, and confound regression. HALFpipe generates an interactive quality assessment (QA) webpage to rate the quality of key preprocessing outputs and raw data in general. HALFpipe features myriad post-processing functions at the individual subject level, including calculation of task-based activation, seed-based connectivity, network-template (or dual) regression, atlas-based functional connectivity matrices, regional homogeneity (ReHo), and fractional amplitude of low-frequency fluctuations (fALFF), offering support to evaluate a combinatorial number of features or preprocessing settings in one run. Finally, flexible factorial models can be defined for mixed-effects regression analysis at the group level, including multiple comparison correction. Here, we introduce the theoretical framework in which HALFpipe was developed, and present an overview of the main functions of the pipeline. HALFpipe offers the scientific community a major advance toward addressing the reproducibility crisis in neuroimaging, providing a workflow that encompasses preprocessing, post-processing, and QA of fMRI data, while broadening core principles of data analysis for producing reproducible results. Instructions and code can be found at https://github.com/HALFpipe/HALFpipe.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Reproducibility of Results
8.
Hum Brain Mapp ; 43(1): 414-430, 2022 01.
Article in English | MEDLINE | ID: mdl-33027543

ABSTRACT

First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.


Subject(s)
Bipolar Disorder/pathology , Cognitive Dysfunction/pathology , Educational Status , Genetic Predisposition to Disease , Intelligence/physiology , Neuroimaging , Schizophrenia/pathology , Bipolar Disorder/complications , Bipolar Disorder/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Family , Humans , Magnetic Resonance Imaging , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Schizophrenia/etiology
9.
Biol Psychiatry ; 91(2): 216-225, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34607654

ABSTRACT

BACKGROUND: Altered ventral striatal (vST) activation to reward expectancy is a well-established intermediate phenotype for psychiatric disorders, specifically schizophrenia (SZ). Preclinical research suggests that striatal alterations are related to a reduced inhibition by the hippocampal formation, but its role in human transdiagnostic reward-network dysfunctions is not well understood. METHODS: We performed functional magnetic resonance imaging during reward processing in 728 individuals including healthy control subjects (n = 396), patients (SZ: n = 46; bipolar disorder: n = 45; major depressive disorder: n = 60), and unaffected first-degree relatives (SZ: n = 46; bipolar disorder: n = 50; major depressive disorder: n = 85). We assessed disorder-specific differences in functional vST-hippocampus coupling and transdiagnostic associations with dimensional measures of positive, negative, and cognitive symptoms. We also probed the genetic underpinning using polygenic risk scores for SZ in a subset of healthy participants (n = 295). RESULTS: Functional vST-hippocampus coupling was 1) reduced in patients with SZ and bipolar disorder (pFWE < .05, small-volume corrected [SVC]); 2) associated transdiagnostically to dimensional measures of positive (pFWE = .01, SVC) and cognitive (pFWE = .02, SVC), but not negative, (pFWE > .05, SVC) symptoms; and 3) reduced in first-degree relatives of patients with SZ (pFWE = .017, SVC) and linked to the genetic risk for SZ in healthy participants (p = .035). CONCLUSIONS: We provide evidence that reduced vST-hippocampus coupling during reward processing is an endophenotype for SZ linked to positive and cognitive symptoms, supporting current preclinical models of the emergence of psychosis. Moreover, our data indicate that vST-hippocampus coupling is familial and linked to polygenic scores for SZ, supporting the use of this measure as an intermediate phenotype for psychotic disorders.


Subject(s)
Depressive Disorder, Major , Psychotic Disorders , Biomarkers , Endophenotypes , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/genetics , Reward
10.
Neuropsychobiology ; 81(2): 141-148, 2022.
Article in English | MEDLINE | ID: mdl-34571510

ABSTRACT

INTRODUCTION: Emotion regulation (ER), the ability to actively modulate one's own emotion reactions, likely depends on the individual's current emotional state. Here, we investigated whether negative emotions induced by an interpersonal autobiographic script affect the neuronal processes underlying ER. METHODS: Twenty healthy participants were recruited and underwent functional magnetic resonance imaging (fMRI) during performance of distancing, a specific ER strategy, while viewing emotionally arousing pictures. Participants were instructed to either naturally experience ("permit" condition) or to actively downregulate ("regulate" condition) their emotional responses to the presented stimuli. Before each of the 4 runs in total, a neutral or negative autobiographical audio script was presented. The negative script comprised an emotionally negative event from childhood or adolescence that represented either emotional abuse or emotional neglect. The second event comprised an everyday neutral situation. We aimed at identifying the neural correlates of ER and their modulation by script-driven imagery. RESULTS: fMRI analyses testing for greater responses in the "regulate" than the "permit" condition replicated previously reported neural correlates of ER in the right dorsolateral prefrontal cortex and the right inferior parietal lobule. A significant ER effect was also observed in the left orbitofrontal cortex. In the amygdala, we found greater responses in the "permit" compared to the "regulate" condition. We did not observe a significant modulation of the ER effects in any of these regions by the negative emotional state induced by autobiographical scripts. Bayesian statistics confirmed the absence of such modulations by providing marginal evidence for null effects. DISCUSSION: While we replicated previously reported neural correlates of ER, we found no evidence for an effect of mood induction with individualized autobiographical scripts on the neural processes underlying ER in healthy participants.


Subject(s)
Emotional Regulation , Adolescent , Amygdala , Bayes Theorem , Brain , Brain Mapping , Child , Emotions/physiology , Humans , Magnetic Resonance Imaging
11.
Science ; 367(6484)2020 03 20.
Article in English | MEDLINE | ID: mdl-32193296

ABSTRACT

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.


Subject(s)
Cerebral Cortex/anatomy & histology , Genetic Variation , Attention Deficit Disorder with Hyperactivity/genetics , Brain Mapping , Cognition , Genetic Loci , Genome-Wide Association Study , Humans , Magnetic Resonance Imaging , Organ Size/genetics , Parkinson Disease/genetics
12.
Psychol Med ; 50(16): 2740-2750, 2020 12.
Article in English | MEDLINE | ID: mdl-31637983

ABSTRACT

BACKGROUND: Limbic-cortical imbalance is an established model for the neurobiology of major depressive disorder (MDD), but imaging genetics studies have been contradicting regarding potential risk and resilience mechanisms. Here, we re-assessed previously reported limbic-cortical alterations between MDD relatives and controls in combination with a newly acquired sample of MDD patients and controls, to disentangle pathology, risk, and resilience. METHODS: We analyzed functional magnetic resonance imaging data and negative affectivity (NA) of MDD patients (n = 48), unaffected first-degree relatives of MDD patients (n = 49) and controls (n = 109) who performed a faces matching task. Brain response and task-dependent amygdala functional connectivity (FC) were compared between groups and assessed for associations with NA. RESULTS: Groups did not differ in task-related brain activation but activation in the superior frontal gyrus (SFG) was inversely correlated with NA in patients and controls. Pathology was associated with task-independent decreases of amygdala FC with regions of the default mode network (DMN) and decreased amygdala FC with the medial frontal gyrus during faces matching, potentially reflecting a task-independent DMN predominance and a limbic-cortical disintegration during faces processing in MDD. Risk was associated with task-independent decreases of amygdala-FC with fronto-parietal regions and reduced faces-associated amygdala-fusiform gyrus FC. Resilience corresponded to task-independent increases in amygdala FC with the perigenual anterior cingulate cortex (pgACC) and increased FC between amygdala, pgACC, and SFG during faces matching. CONCLUSION: Our results encourage a refinement of the limbic-cortical imbalance model of depression. The validity of proposed risk and resilience markers needs to be tested in prospective studies. Further limitations are discussed.


Subject(s)
Amygdala/physiopathology , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Emotions/physiology , Resilience, Psychological , Adult , Biomarkers , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Risk Factors , Young Adult
13.
Cereb Cortex ; 30(4): 2707-2718, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31828294

ABSTRACT

Recent large-scale, genome-wide association studies (GWAS) have identified hundreds of genetic loci associated with general intelligence. The cumulative influence of these loci on brain structure is unknown. We examined if cortical morphology mediates the relationship between GWAS-derived polygenic scores for intelligence (PSi) and g-factor. Using the effect sizes from one of the largest GWAS meta-analysis on general intelligence to date, PSi were calculated among 10 P value thresholds. PSi were assessed for the association with g-factor performance, cortical thickness (CT), and surface area (SA) in two large imaging-genetics samples (IMAGEN N = 1651; IntegraMooDS N = 742). PSi explained up to 5.1% of the variance of g-factor in IMAGEN (F1,1640 = 12.2-94.3; P < 0.005), and up to 3.0% in IntegraMooDS (F1,725 = 10.0-21.0; P < 0.005). The association between polygenic scores and g-factor was partially mediated by SA and CT in prefrontal, anterior cingulate, insula, and medial temporal cortices in both samples (PFWER-corrected < 0.005). The variance explained by mediation was up to 0.75% in IMAGEN and 0.77% in IntegraMooDS. Our results provide evidence that cumulative genetic load influences g-factor via cortical structure. The consistency of our results across samples suggests that cortex morphology could be a novel potential biomarker for neurocognitive dysfunction that is among the most intractable psychiatric symptoms.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Genome-Wide Association Study/methods , Intelligence/physiology , Multifactorial Inheritance/physiology , Adolescent , Female , Humans , Longitudinal Studies , Male
14.
Schizophr Bull ; 46(3): 592-602, 2020 04 10.
Article in English | MEDLINE | ID: mdl-31586408

ABSTRACT

The relationship between transdiagnostic, dimensional, and categorical approaches to psychiatric nosology is under intense debate. To inform this discussion, we studied neural systems linked to reward anticipation across a range of disorders and behavioral dimensions. We assessed brain responses to reward expectancy in a large sample of 221 participants, including patients with schizophrenia (SZ; n = 27), bipolar disorder (BP; n = 28), major depressive disorder (MD; n = 31), autism spectrum disorder (ASD; n = 25), and healthy controls (n = 110). We also characterized all subjects with an extensive test battery from which a cognitive, affective, and social functioning factor was constructed. These factors were subsequently related to functional responses in the ventral striatum (vST) and neural networks linked to it. We found that blunted vST responses were present in SZ, BP, and ASD but not in MD. Activation within the vST predicted individual differences in affective, cognitive, and social functioning across diagnostic boundaries. Network alterations extended beyond the reward network to include regions implicated in executive control. We further confirmed the robustness of our results in various control analyses. Our findings suggest that altered brain responses during reward anticipation show transdiagnostic alterations that can be mapped onto dimensional measures of functioning. They also highlight the role of executive control of reward and salience signaling in the disorders we study and show the power of systems-level neuroscience to account for clinically relevant behaviors.


Subject(s)
Affective Symptoms/physiopathology , Anticipation, Psychological/physiology , Autism Spectrum Disorder/physiopathology , Bipolar Disorder/physiopathology , Cognitive Dysfunction/physiopathology , Depressive Disorder, Major/physiopathology , Executive Function/physiology , Nerve Net/physiopathology , Psychosocial Functioning , Reward , Schizophrenia/physiopathology , Ventral Striatum/physiopathology , Adult , Affective Symptoms/diagnostic imaging , Affective Symptoms/etiology , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/diagnostic imaging , Bipolar Disorder/complications , Bipolar Disorder/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Depressive Disorder, Major/complications , Depressive Disorder, Major/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Prospective Studies , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Ventral Striatum/diagnostic imaging , Young Adult
15.
Front Psychol ; 10: 2343, 2019.
Article in English | MEDLINE | ID: mdl-31681122

ABSTRACT

AIM OF THE STUDY: The study examines how neurobiological and genetic explanations of psychopathy influence decision-making of German law students about legal and moral responsibility and sentencing of a defendant in a case of manslaughter. Previous studies from the United States and Germany have been criticized because they partly contradict legal analyses of real-world criminal cases. With a modified design, which integrates the main criticism, we re-examined the impact of biological explanations for psychopathy on decision-making in the courtroom. METHODS: We developed an improved quasi-experimental design to probe three case vignettes presenting different explanations of psychopathy in a criminal case of manslaughter. All three vignettes present the same information about a forensic expert's testimony that is said to report compelling evidence for the diagnosis of "psychopathy." The independent variable being manipulated is the type of information supporting the expert diagnosis: either no biological explanation of "psychopathy" versus a neurological explanation (brain injury) versus a genetic explanation (MAOA gene). The outcome measure is a questionnaire on legal and moral responsibility, free will, the type of custody, and the duration of the sentence. The study is adequately powered. We openly publish the data and all statistical analyses as reproducible R scripts. RESULTS: The answers of German law students (n = 317) indicate that the omission of a neurobiological explanation is significantly associated with higher ratings of legal responsibility while compared to no biological explanation. However, there was no significant difference on the prison sentencing and type of custody assigned. Furthermore, there was no difference in the self-reported impact of the explanation of psychopathy on the participants' decision-making. CONCLUSION: Our findings from German law students corroborates previous research on German judges but is markedly distinct from studies on United States judges. Whereas in the United States, biological information seems to have a mitigating effect, it seems to increase the rate of involuntary commitment to forensic psychiatric hospitals in Germany.

16.
Hum Brain Mapp ; 40(18): 5202-5212, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31441562

ABSTRACT

Previous studies have linked the low expression variant of a variable number of tandem repeat polymorphism in the monoamine oxidase A gene (MAOA-L) to the risk for impulsivity and aggression, brain developmental abnormalities, altered cortico-limbic circuit function, and an exaggerated neural serotonergic tone. However, the neurobiological effects of this variant on human brain network architecture are incompletely understood. We studied healthy individuals and used multimodal neuroimaging (sample size range: 219-284 across modalities) and network-based statistics (NBS) to probe the specificity of MAOA-L-related connectomic alterations to cortical-limbic circuits and the emotion processing domain. We assessed the spatial distribution of affected links across several neuroimaging tasks and data modalities to identify potential alterations in network architecture. Our results revealed a distributed network of node links with a significantly increased connectivity in MAOA-L carriers compared to the carriers of the high expression (H) variant. The hyperconnectivity phenotype primarily consisted of between-lobe ("anisocoupled") network links and showed a pronounced involvement of frontal-temporal connections. Hyperconnectivity was observed across functional magnetic resonance imaging (fMRI) of implicit emotion processing (pFWE = .037), resting-state fMRI (pFWE = .022), and diffusion tensor imaging (pFWE = .044) data, while no effects were seen in fMRI data of another cognitive domain, that is, spatial working memory (pFWE = .540). These observations are in line with prior research on the MAOA-L variant and complement these existing data by novel insights into the specificity and spatial distribution of the neurogenetic effects. Our work highlights the value of multimodal network connectomic approaches for imaging genetics.


Subject(s)
Brain/diagnostic imaging , Genotype , Magnetic Resonance Imaging/methods , Minisatellite Repeats/genetics , Monoamine Oxidase/genetics , Nerve Net/diagnostic imaging , Adult , Brain/physiology , Female , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiology , Humans , Male , Nerve Net/physiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Young Adult
17.
Biol Psychiatry ; 86(7): 545-556, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31443932

ABSTRACT

BACKGROUND: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. METHODS: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. RESULTS: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. CONCLUSIONS: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.


Subject(s)
Bipolar Disorder , Brain/pathology , Genetic Predisposition to Disease , Schizophrenia , Adult , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Cohort Studies , Female , Humans , Male , Middle Aged , Schizophrenia/genetics , Schizophrenia/pathology , Young Adult
18.
Front Psychiatry ; 9: 631, 2018.
Article in English | MEDLINE | ID: mdl-30534092

ABSTRACT

Adaptive recovery from a stressor fosters resilience. So far, however, few studies have examined brain functional connectivity in the aftermath of stress, with inconsistent results reported. Focusing on the immediate recovery from psychosocial stress, the current study compared amygdala resting-state functional connectivity (RSFC) before and immediately after psychosocial stress between cortisol responders and non-responders. Differences between groups were expected for amygdala RSFC with regions involved in down-regulation of the physiological stress response, emotion regulation, and memory consolidation. Eighty-six healthy participants (36 males/50 females) underwent a social stress paradigm inside the MRI scanner. Before and immediately after stress, resting-state (RS) fMRI scans were acquired to determine amygdala RSFC. Next, changes in connectivity from pre- to post-stress were compared between cortisol responders and non-responders. Responders demonstrated a cortisol increase, higher negative affect, and decreased heart rate variability (HRV) in response to stress compared to non-responders. A significant Sex-by-Responder-by-Time interaction was found between the bilateral amygdala and posterior cingulate cortex (PCC) and precuneus (p < 0.05, corrected). As males were also more likely to show a cortisol increase to the stress task than females, follow-up analyses were conducted for both sexes separately. Whereas no difference was observed between female responders and non-responders, male non-responders showed an increase in FC after stress between the bilateral amygdala and the PCC and precuneus (p < 0.05, corrected). The increased coupling of the amygdala with the PCC/precuneus, a core component of the default mode network (DMN), might indicate an increased engagement of the amygdala within the DMN directly after stress in non-responders. Although this study was carried out in healthy participants, and the results likely reflect normal variations in the neural response to stress, understanding the mechanisms that underlie these variations could prove beneficial in revealing neural markers that promote resilience to stress-related disorders.

19.
Schizophr Res ; 195: 190-196, 2018 05.
Article in English | MEDLINE | ID: mdl-28958479

ABSTRACT

The rs1625579 variant near the microRNA-137 (MIR137) gene is one of the best-supported schizophrenia variants in genome-wide association studies (GWAS), and microRNA-137 functionally regulates other GWAS identified schizophrenia risk variants. Schizophrenia patients with the MIR137 rs1625579 risk genotype (homozygous for the schizophrenia risk variant) also have aberrant brain structure. It is unclear if the effect of MIR137 among schizophrenia patients is due to potential epistasis with genetic risk for schizophrenia or other factors of the disorder. Here, we investigated the effect of MIR137 genotype on white matter fractional anisotropy (FA), cortical thickness (CT), and surface area (SA) in a sample comprising healthy control subjects, and individuals with familial risk for psychosis (first-degree relatives of patients with schizophrenia or bipolar disorder; N=426). In voxel-wise analyses of FA, we observed a significant genotype-by-group interaction (PFWE<0.05). The familial risk group with risk genotype had lower FA (PFWE<0.05), but there was no genetic association in controls. In vertex-wise analyses of SA, we also observed a significant genotype-by-group interaction (PFWE<0.05). Relatives with MIR137 risk genotype had lower SA, however the risk genotype was associated with higher SA in the controls (all PFWE<0.05). These results show that MIR137 risk genotype is associated with lower FA in psychosis relatives that is similar to previous imaging-genetics findings in patients with schizophrenia. Furthermore, MIR137 genotype may also be a risk factor in a subclinical population with wide reductions in white matter FA and cortical SA.


Subject(s)
Cerebral Cortex/diagnostic imaging , Genetic Predisposition to Disease , MicroRNAs/genetics , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics , White Matter/diagnostic imaging , Adult , Anisotropy , Female , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Psychotic Disorders/diagnostic imaging
20.
Neuropsychopharmacology ; 43(2): 406-414, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28589968

ABSTRACT

The serotonin transporter-linked polymorphic region 5-HTTLPR is a key genetic regulator of 5-HTT expression in the human brain where the short allele S has been implicated in emotion dysregulation. However, the neural mechanism underlying the association between this variant and emotion processing is still unclear. Earlier studies suggested an effect of 5-HTTLPR on amygdala activation during emotional face processing. However, this association has been questioned in recent studies employing larger sample sizes and meta-analyses. Here, we examined a sample of 223 healthy subjects with a well-established fMRI emotional face processing task to (1) re-evaluate the association between 5-HTTLPR and amygdala activation, (2) explore potential network-based functional connectivity phenotypes for associations with 5-HTTLPR, and (3) probe the reliability, behavioral significance and potential structural confounds of the identified network phenotype. Our results revealed no significant effect of 5-HTTLPR on amygdala activation (P>0.79). However, the number of S alleles was significantly correlated with functional connectivity of a visual-limbic subnetwork (PFWE=0.03). The subnetwork cluster included brain regions that are pivotal to emotion regulation such as the hippocampus, orbitofrontal cortex, anterior cingulate gyrus, fusiform gyrus, and subcortex. Notably, individuals with lower subnetwork connectivity had significantly higher emotion suppression scores (P=0.01). Further, the connectivity metrics were test-retest reliable and independent from subnetwork gray matter volume and white matter anisotropy. Our data provide evidence for a functional network-based phenotype linking genetic variation in 5-HTTLPR to emotion regulation, and suggest that further critical evaluations of the association between 5-HTTLPR and amygdala activation are warranted.


Subject(s)
Cerebral Cortex/physiology , Connectome , Emotions/physiology , Facial Recognition/physiology , Limbic System/physiology , Nerve Net/physiology , Serotonin Plasma Membrane Transport Proteins/genetics , Adult , Amygdala/diagnostic imaging , Amygdala/physiology , Cerebral Cortex/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Humans , Limbic System/diagnostic imaging , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Phenotype , Polymorphism, Genetic , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...