Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
J Biochem Mol Toxicol ; 38(4): e23638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613466

ABSTRACT

The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1ß into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.


Subject(s)
Neuralgia , Pancreatic Neoplasms , Humans , Substance P , Neuralgia/etiology , Pancreas , Pancreatic Neoplasms/complications , Fibroblasts , Tumor Microenvironment
2.
Drug Chem Toxicol ; : 1-12, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221775

ABSTRACT

Aluminum (Al) is a known neurotoxic trace element linked to Alzheimer's disease (AD). Naltrexone, an opioid antagonist, has shown promising effects in reducing neuroinflammation at lower doses than those prescribed for addiction. This study aimed to determine the neuroprotective effects of naltrexone on Al-induced neurotoxicity in an in vitro AD model. The SH-SY5Y cells were first cultivated in a standard growth medium. Subsequently, the cells were induced to differentiate by decreasing the concentration of fetal bovine serum and introducing retinoic acid (RA) into the culture media. Subsequently, the inclusion of brain-derived neurotrophic factor (BDNF) was implemented in conjunction with RA. The process of differentiation was concluded on the seventh day. Study groups (n = 3) were designed as the control group, naltrexone group, Al group, Al-Nal group, Alzheimer' model (AD) group, Alzheimer model + Al-exposed group (AD-Al), Alzheimer model + Nal applied group (AD-Nal) and Alzheimer model + Al-exposed + Nal applied group (AD-Al-Nal). Hyperphosphorylated Tau protein as the specific marker of AD was measured in all groups. Glycogen synthase kinase-3 (GSK-3)ß, Protein phosphatase 2A (PP2A), Akt and Wnt signaling pathways were analyzed comparatively. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl and reactive oxygen species) were measured comparatively in the study groups. The results showed that naltrexone reduced hyperphosphorylated tau protein levels by regulating GSK-3ß, PP2A, Akt and Wnt signaling. Also, exposure to naltrexone decreased oxidative stress parameters. Based on these results, naltrexone shows promise as a potential therapy for AD, subject to additional clinical assessments.

3.
Toxicol Mech Methods ; 34(2): 109-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37794599

ABSTRACT

Nanoparticles (NPs) are particles of matter that are between 1 to 100 nm in diameter. They are suggested to cause toxic effects in both humans and environment thorough different mechanisms. However, their toxicity profile may be different from the parent material. Titanium dioxide (TiO2) NPs are widely used in cosmetic, pharmaceutical and food industries. As a white pigment, the use of TiO2 is used in food coloring, industrial paints, clothing and UV filters has increased tremendously in recent years. Melatonin, on the other hand, is a well-known antioxidant and may prevent oxidative stress caused by a variety of different substances, including NPs. In the current study, we aimed to comparatively investigate the effects of normal-sized TiO2 (220 nm) and nano-sized TiO2 (21 nm) on cytopathology, cytotoxicity, oxidative damage (lipid peroxidation, protein oxidation and glutathione), genotoxicity (8-hydroxydeoxyguanosine), apoptosis (caspase 3, 8 and 9) and epigenetic alterations (global DNA methylation, H3 acetylation) on 3T3 fibroblast cells. In addition, the possible protective effects of melatonin, which is known to have strong antioxidant effects, against the toxicity of TiO2 were also evaluated. Study groups were: a. the control group; b. melatonin group; c. TiO2 group; d. nano-sized TiO2 group; e. TiO2 + melatonin group and f. nano-sized TiO2 + melatonin group. We observed that both normal-sized and nano-sized TiO2 NPs showed significant toxic effects. However, TiO2 NPs caused higher DNA damage and global DNA methylation compared to normal-sized TiO2 whereas normal-sized TiO2 led to lower H3 acetylation vs. TiO2 NPs. Melatonin showed partial protective effect against the toxicity caused by TiO2 NPs.


Subject(s)
Melatonin , Metal Nanoparticles , Nanoparticles , Humans , Melatonin/pharmacology , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Titanium/toxicity , DNA Damage
4.
J Appl Toxicol ; 44(4): 609-622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37989595

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological disorder that affects various cognitive functions, behavior, and personality. AD is thought to be caused by a combination of genetic and environmental factors, including exposure to aluminum (Al). Virgin coconut oil (VCO) may have potential as a natural neuroprotectant against AD. Aim of this study was to determine neuroprotective effects of VCO on Al-induced neurotoxicity in an in vitro AD model. SH-SY5Y cells were initially cultured in normal growth medium and then differentiated by reducing fetal bovine serum content and adding retinoic acid (RA). Later, brain-derived neurotrophic factor (BDNF) was added along with RA. The differentiation process was completed on the seventh day. Study groups (n = 3) were designed as control group, VCO group, Al group, Al-VCO group, Alzheimer model (AD) group, AD + Al-exposed group (AD+Al), AD + VCO applied group (AD + VCO) and AD + Al-exposed + VCO applied group (AD + Al + VCO). Specific markers of AD (hyperphosphorylated Tau protein, amyloid beta 1-40 peptide, and amyloid precursor protein) were measured in all groups. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl, and reactive oxygen species) and neurotransmitter-related parameters (dopamine, dopamine transporter acetylcholine, and synuclein alpha levels, acetylcholinesterase activity) were measured comparatively in the study groups. VCO reduced amyloid beta and hyperphosphorylated Tau protein levels in the study groups. In addition, oxidative stress levels decreased, and neurotransmitter parameters improved with VCO. Our study shows that VCO may have potential therapeutic effects in Alzheimer's disease and further experiments are needed to determine its efficacy.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neuroprotective Agents , Humans , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Coconut Oil/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Aluminum/toxicity , Amyloid beta-Peptides/toxicity , Acetylcholinesterase/metabolism , Neurotransmitter Agents
5.
Int J Environ Health Res ; : 1-10, 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38007699

ABSTRACT

Endocrine-disrupting environmental chemicals are a public health concern, particularly fetal exposure to Bisphenol derivatives. This study aimed to assess fetal exposure to Bisphenol derivatives (BPA, BPF, and BPS) by measuring their levels in cord blood and investigating their association with plastic material used in daily life as well as cord blood TSH and free L-thyroxine (fT4) levels. In this descriptive study, a questionnaire with a face-to-face interview was administered before birth, and cord blood samples were taken immediately after delivery. The mean levels of BPA, BPF, TSH, and fT4 were measured as 10.69 ± 2.39 ng/ml, 3.80 ± 0.58 ng/ml; 2.36 ± 0.23 µIU/ml, and 14.18 ± 0.53 pg/ml, respectively, in a total of 104 cord blood samples. All BPS levels remained below the detection limit. Linear regression analysis revealed a positive association between birth weight and cord blood BPA concentration (ß = 0.26; p = 0.02). Further research on maternal exposure during the fetal and neonatal period is critical for public health.

6.
Environ Sci Pollut Res Int ; 30(45): 100391-100402, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37626198

ABSTRACT

The aim was to investigate the association between bisphenol A (BPA), 25-hydroxy vitamin D [25(OH)D], and 1α,25 dihydroxy vitamin D [1,25(OH)2D] levels in the cord blood of newborn babies. BPA was measured by high pressure liquid chromatography (HPLC) and vitamin D levels by commercial ELISA or ECLIA kits. BPA and Vitamin D levels were grouped according to tertile values. In the cord blood, the median 25(OH)D level was 14.9 ng/mL (IQR: 8.5-20.8) and median 1,25(OH)2D level was 53.3 pg/dL (IQR: 42.3-98.4). 25(OH)D levels were < 20 ng/mL in 76.5% of the babies. BPA was detectable in 72.4% of the cord blood samples; median BPA level was 1.57 ng/mL (IQR: < DL-4.05 ng/mL). Frequencies of vitamin D deficiency and frequencies of cases having the highest tertile active vitamin D levels were similar in groups of BPA tertiles in both univariate and multivariate analysis. In conclusion, both BPA exposure and insufficient vitamin D transfer via cord blood are common in newborns. Bisphenol A levels were not correlated with vitamin D levels in cord blood of healthy mother-fetus pairs.


Subject(s)
Fetal Blood , Vitamin D Deficiency , Infant , Humans , Infant, Newborn , Fetal Blood/chemistry , Vitamin D/analysis , Vitamins
7.
J Appl Toxicol ; 43(12): 1793-1805, 2023 12.
Article in English | MEDLINE | ID: mdl-37409350

ABSTRACT

Dihydrolipoic acid (DHLA) is a natural antioxidant known for its ability to counteract metal toxicity and oxidative stress. It has shown the potential to safeguard cells from harmful environmental substances. It may hold therapeutic benefits in treating neurodegenerative disorders by defending against oxidative damage and chronic inflammation. Thus, this study aimed to explore the potential neuroprotective effects of DHLA against aluminum (Al)-induced toxicity using an Alzheimer's disease (AD) model in vitro. The study focused on two important pathways: GSK-3ß and the Wnt signaling pathways. The SH-SY5Y cell line was differentiated to establish AD, and the study group were as follows: control, Al, DHLA, Al-DHLA, AD, AD-Al, AD-DHLA, and AD-Al-DHLA. The impact of DHLA on parameters related to oxidative stress was assessed. The activity of the GSK-3ß pathway was measured by evaluating the levels of PPP1CA, PP2A, GSK-3ß, and Akt. The Wnt signaling pathway was assessed by measuring Wnt/ß-catenin in the different study groups. Exposure to DHLA significantly reduced oxidative stress by effectively decreasing the levels of reactive oxygen species, thereby protecting against protein oxidation and limiting the production of malonaldehyde. Moreover, the DHLA-treated groups exhibited a remarkable increase in the total antioxidant capacity. Furthermore, the study observed an upregulation of the Wnt signaling pathway and a downregulation of the GSK-3ß pathway in the groups treated with DHLA. In summary, the neuroprotective effects of DHLA, primarily achieved by reducing oxidative stress and modulating critical imbalanced pathways associated with AD, indicate its potential as a promising addition to the treatment regimens of AD patients.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neuroprotective Agents , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aluminum/toxicity , Glycogen Synthase Kinase 3 beta , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Alzheimer Disease/drug therapy
8.
Int J Environ Health Res ; 33(12): 1289-1304, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37309736

ABSTRACT

Polychlorinated biphenyls (PCBs) were used in different industrial areas and banned due to their high toxicity. Aroclor 1254 (A1254), commercial PCB congener, accumulates in environment leading to high human exposure. A1254 may cause hepatotoxicity, metabolic and endocrine disorders. In our study, 3-week-old male rats were separated into 6 groups: C (0.15 mg/kg Se in diet); SeS (1 mg/kg Se in diet); SeD (0.05 mg/kg Se in diet); A1254 receiving groups (A; ASeS; ASeD) were given 10 mg/kg/day A1254 orally for last 15 days of feeding period with control, SeD or SeS diet, respectively, for 5 weeks. Histopathology, oxidant/antioxidant balance, apoptosis and cell cycle proteins (p53, p21) in liver were evaluated. Our results suggest that A1254 leads to changes in histology, oxidative stress and apoptosis. Selenium deficiency augments oxidative stress and apoptosis while selenium supplementation is partially protective. More mechanistic in vivo experiments are necessary for evaluation of hepatotoxicity of PCBs.


Subject(s)
Chemical and Drug Induced Liver Injury , Polychlorinated Biphenyls , Selenium , Humans , Rats , Male , Animals , Selenium/toxicity , Selenium/metabolism , Polychlorinated Biphenyls/toxicity
9.
J Appl Toxicol ; 43(9): 1368-1378, 2023 09.
Article in English | MEDLINE | ID: mdl-36999203

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory loss and dementia and is characterized by a decline in cognitive functions. Brain infections, especially induced by herpes simplex virus type-1 (HSV-1), are suggested to play a key role in the pathogenesis of AD. Within the scope of this study, two different AD models (Tau model and amyloid beta [Aß]) were created in the SH-SY5Y cell line, and HSV glycoprotein B (gB) was applied to the cell line and on the generated AD models. Study groups (n = 3) were designed as (1) control, (2) HSV-gB group, (3) retinoic acid (RA) and brain derived neurotrophic factor (BDNF) induced Alzheimer's model (AD), (4) RA and BDNF induced Alzheimer's model + HSV-gB (ADH), (5) Aß 1-42 peptide-induced Alzheimer's model (Aß), and (6) Aß 1-42 peptide-induced Alzheimer's model + HSV-gB (AßH). Levels of complement proteins and cytokines were determined comparatively. In addition, specific markers of AD (hyperphosphorylated Tau proteins, Aß 1-40 peptide and amyloid precursor protein) were measured in all groups. HSV-gB administration was found to increase Aß and hyperphosphorylated Tau levels, similar to AD models. In addition, our data confirmed that the immune system and chronic inflammation might have a crucial role in AD development and that HSV-1 infection might also be an underlying factor of AD.


Subject(s)
Alzheimer Disease , Herpes Simplex , Neuroblastoma , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/toxicity , Brain-Derived Neurotrophic Factor/metabolism , Cytokines , Herpes Simplex/metabolism , Glycoproteins , Complement System Proteins
10.
J Environ Pathol Toxicol Oncol ; 42(2): 31-48, 2023.
Article in English | MEDLINE | ID: mdl-36749088

ABSTRACT

Dental implants are medical devices that are surgically inserted into the patient's jawbone by an orthodontist to act as roots of missing teeth. After the implantation, the maxilla or mandible integrates with the surface of the dental implant. This process, called "osseointegration," is an important period to ensure the long-term use of dental implants and prevent implant failures. Metal implants are the most used implant materials. However, they have disadvantages such as corrosion, metal ion release from metal implant surfaces and associated toxicity. To avoid these adverse effects and improve osseointegration, alternative dental implant materials such as ceramics, polymers, composites, and novel surface modification technologies have been developed. The safety of these materials are also of concern for toxicologists. This review will give general information about dental implant materials, osseointegration and successful implantation process. Moreover, we will focus on the new surface coatings materials for of dental implants and their toxicity and safety concerns will be discussed.


Subject(s)
Dental Implants , Humans , Surface Properties , Osseointegration , Maxilla , Mandible
11.
Environ Toxicol Pharmacol ; 98: 104065, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640921

ABSTRACT

This study was conducted to estimate the daily dietary intakes of melamine for human milk-fed (HMF) babies and mixed-fed (MF) babies. It was carried out in 70 mother-baby pairs (40 babies in the HMF group and 30 babies in the MF group). Human milk, formula milk, and baby urine samples were collected to assess the dietary exposure of babies. Melamine concentrations were analyzed by using a competitive enzyme-linked immunosorbent assay. Melamine was determined in 82.5 % of the human milk samples in the HMF group (median: 0.75 µg/L) while it was present in 96.7 % of human milk samples (median: 1.25 µg/L) and 96.7 % in formula milk samples (median: 0.95 µg/kg) in the MF group. The mean urinary melamine concentration of HMF babies (1.20 ± 0.21 µg/L) was not significantly different than MF babies (1.35 ± 0.49 µg/L). Melamine exposure was calculated as 0.12 µg/kg bw/day and 0.24 µg/kg bw/day in HMF and MF babies, respectively. Melamine exposure in both groups was below the tolerable daily intake. There were no significant associations between melamine exposure and various features of babies and mothers. As a result, it can be suggested that Turkish babies (aged 0-6 months) are not at risk for high melamine exposure through the diet.


Subject(s)
Milk, Human , Triazines , Infant , Female , Humans , Eating , Diet , Breast Feeding
12.
Drug Chem Toxicol ; 46(3): 510-522, 2023 May.
Article in English | MEDLINE | ID: mdl-35443844

ABSTRACT

Aluminum (Al) is an environmentally abundant metal that is not essential for life. There is considerable evidence that Al as a neurotoxic xenobiotic may play a role in the pathogenesis of neurodegenerative diseases like Alzheimer's disease (AD). Exposure to aluminum has been shown to cause neuronal damage that resembles the symptoms of AD. In this review, we will summarize recent data about Al as the possible risk of incidence of AD. Then glycogen synthase kinase-3 beta (GSK3ß) contributes to the hyperphosphorylation of Tau protein, the main component of neurofibrillary tangles, one of the hallmarks of AD as one of the mechanisms behind Al neurotoxicity will be covered. Overall, there is still a need for epidemiological studies and more in vivo and in vitro studies to determine the exact mechanisms of its neurotoxicity and the role of GSK3ß in both Al toxic effect and AD.


Subject(s)
Aluminum , Alzheimer Disease , Glycogen Synthase Kinase 3 beta , Humans , Aluminum/metabolism , Aluminum/toxicity , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Neurofibrillary Tangles/metabolism , Phosphorylation , tau Proteins/metabolism
13.
Drug Chem Toxicol ; 46(2): 314-322, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35045766

ABSTRACT

Bisphenol A (BPA) BPA is an endocrine-disrupting chemical that has a wide range of uses. Exposure to BPA can be by oral, inhalation, and parenteral routes. Although its use in several products is limited, there is still concern on its adverse health effects, particularly for susceptible populations like children. Alternative bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are now being used instead of BPA, although there is little information on the toxicity of these bisphenols. BPF is used as a plasticizer in the production of several industrial materials as well as in the coating of drinks and food cans. BPS is used in curing fast-drying epoxy glues, as a corrosion inhibitor and as a reactant in polymer reactions. In this study, the possible toxic effects of BPA, BPS, and BPF in HepG2 cells were evaluated comparatively. For this purpose, their effects on cytotoxicity, production of intracellular reactive oxygen species (ROS), oxidant/antioxidant parameters, and DNA damage have been examined. The cytotoxicity potentials of different bisphenols were found to be as BPS > BPF > BPA. All bisphenol derivatives caused increases in intracellular ROS production. We observed that all bisphenol derivatives cause an imbalance in some oxidant/antioxidant parameters. Bisphenols also caused significant DNA damage in order of BPF > BPA > BPS. We can suggest that both of the bisphenol derivatives used as alternatives to BPA also showed similar toxicities and may not be considered as safe alternatives. Mechanistic studies are needed to elucidate this issue.


Subject(s)
Antioxidants , Oxidative Stress , Child , Humans , Antioxidants/pharmacology , Hep G2 Cells , Oxidants , Reactive Oxygen Species
14.
Environ Sci Pollut Res Int ; 30(5): 12189-12206, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36104651

ABSTRACT

Endocrine disrupting chemicals (EDCs) may affect many biological processes like growth and stress response. Bisphenol A (BPA) is a plasticizer that is used to harden plastics and polycarbonates. Phthalates are used to add flexibility to polyvinyl chloride containing plastics. The main metabolite of di(2-ethylhexyl) phthalate (DEHP) is mono(2-ethylhexyl) phthalate (MEHP) and it is even more toxic than the parent compound. Humans are usually exposed to these chemicals in mixtures by different routes starting from fetal period. However, there are not many studies in literature that investigate the combined effects of these chemicals. The aim of this study is to investigate toxic effects of BPA and/or MEHP on HepG2 cell line. We have evaluated cytotoxicity, cytomorphological, apoptotic changes, oxidative stress, oxidant/antioxidant status alterations, and endoplasmic reticulum (ER) stress. Combined exposure to BPA and MEHP caused alterations in oxidant/antioxidant status and ER stress marker proteins in both cytoplasmic and nuclear cellular fractions. We can suggest that combined exposure to EDCs may cause serious toxicological outcomes and more mechanistic studies are needed to determine the combined toxic effects.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Phthalic Acids , Humans , Antioxidants , Oxidants , Phthalic Acids/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Plastics , Apoptosis , Endoplasmic Reticulum Stress , Endocrine Disruptors/toxicity , Cell Line
15.
Drug Chem Toxicol ; : 1-11, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36571147

ABSTRACT

This study aimed to estimate and compare dietary exposure to bisphenol A (BPA) in exclusively breastfed (EBF) and breastfed plus formula-fed (BF + FF) infants. A total of 70 mothers and their 0-6 month-old infants (40 in the EBF group and 30 in BF + FF group) were included in the study. After the questionnaire form was applied to the mothers, maternal breast milk, infant formula, and infant urine were collected from mother-infant dyads. Total BPA levels in breast milk, infant formula, and infant urine samples were analyzed by the high-pressure liquid chromatography (HPLC). While BPA was detected in 92.5% of the breast milk samples in the EBF group (mean ± SD = 0.59 ± 0.29 ng/mL), BPA was detected in all of the breast milk samples in the BF + FF group (mean ± SD= 0.72 ± 0.37 ng/mL) (p < 0.05). Similarly, 100% of the infant formula samples in the BF + FF group had detectable levels of BPA (mean ± SD = 7.54 ± 1.77 ng/g formula). The mean urinary BPA levels in the EBF infants (4.33 ± 1.89 µg/g creatinine) were not statistically different from the BF + FF infants (5.81 ± 0.11 µg/g creatinine) (p > 0.05). The average daily BPA intake in EBF infants (0.18 ± 0.13 µg/kg body weight (bw)/day) was found to be significantly higher than in BF + FF infants (0.12 ± 0.09 µg/kg bw/day) (p < 0.05). The estimated dietary intakes of BPA for infants in both groups were below the temporary tolerable daily intake (t-TDI) (4 µg/kg bw/day). Consequently, BPA intake of EBF and BF + FF infants were within safe daily limits during the first six months of life.

16.
Int J Environ Health Res ; : 1-15, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36519276

ABSTRACT

The case-control study aimed to evaluate potential sources of exposure and the plasma concentrations of bisphenol A (BPA) and phthalates in prepubertal children having cerebral palsy (CP) and healthy control. Blood samples of 68 CP and 70 controls were analyzed for BPA, di-(2-ethylhexyl)-phthalate (DEHP), mono-(2-ethylhexyl)-phthalate (MEHP), and dibutyl phthalate (DBP). BPA and DBP levels were similar in groups. The median DEHP and MEHP levels of the children with CP were significantly lower than those of the controls (p = 0.035, p < 0.001, respectively). Exposure to plastic food containers/bags, personal care hygiene products, household cleaners, wood/coal stove heating, and city water supplies were associated with increased odds of higher BPA and phthalate levels in children with CP. In conclusion, potential exposure sources for BPA and phthalates differ in children with CP and healthy controls, and children with CP are not exposed to higher levels of BPA and phthalates.

17.
Hum Exp Toxicol ; 41: 9603271221136206, 2022.
Article in English | MEDLINE | ID: mdl-36411272

ABSTRACT

In this study, we aimed to evaluate possible toxic effects of thimerosal, aluminum and combination of thimerosal and aluminum in SH-SY5Y cells. Inhibitory concentrations were determined by MTT assay; reactive oxygen species (ROS) were determined by a fluorometric kit and antioxidant/oxidant parameters were measured by spectrophotometric kits. Nuclear factor erythroid 2-associated factor 2 (Nrf2), norepinephrine (NE), dopamine transporter (DAT) and dopamine beta ß-hydroxylase (DBH) levels were measured by sandwich ELISA kits while 8-hydroxy deoxyguanosine (8-OHdG) and dopamine levels were determined by competitive ELISA kits. Thimerosal (1.15 µM) and aluminum (362 µM) were applied to cells at inhibitory concentrations 20 (IC20s) for 24 h. ROS increased significantly in cells aluminum- and aluminum+thimerosal-treated cells. Glutathione levels decreased in aluminum group while total antioxidant capacity and protein oxidation levels increased significantly in aluminum and aluminum+thimerosal groups. Lipid peroxidation increased significantly in groups treated with aluminum and aluminum+thimerosal. Nrf2 levels and DNA damage were significantly higher in all groups while dopamine levels significantly increased in cells treated with thimerosal and aluminum+thimerosal, DAT levels were found to be higher in all experimental groups compared to the control. These findings showed that both thimerosal and aluminum can change oxidant/antioxidant status, cause DNA damage, alter dopamine and DAT levels. Changes seen in cells treated with combined exposure to aluminum and thimerosal are more pronounced. Special care should be taken while vaccinating sensitive populations and safer alternatives for aluminum and thimerosal should used.


Subject(s)
Neuroblastoma , Thimerosal , Humans , Thimerosal/toxicity , Aluminum Hydroxide , Aluminum/toxicity , NF-E2-Related Factor 2 , Dopamine , Antioxidants/pharmacology , Reactive Oxygen Species , Neuroblastoma/metabolism , Cell Line , Oxidants
18.
J Environ Pathol Toxicol Oncol ; 41(3): 45-64, 2022.
Article in English | MEDLINE | ID: mdl-35993955

ABSTRACT

On December 2019, the world faced a new pandemic caused by a novel type of coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease is named as "coronavirus disease 2019 (COVID-19)." This RNA virus infected millions of people around the world causing millions of deaths. It takes approximately 8-10 years to develop a new drug and it seems hard to have a specific pharmaceutical agent against COVID-19. So far, there is only one drug that has applied for registration. The drugs used in clinics against COVID-19 were approved for malaria, human immunodeficiency syndrome (HIV), influenza A and B, and other viral diseases. All these drugs for COVID-19 treatment are being applied according to "drug repurposing (drug repositioning)" strategy. However, they could cause some severe adverse effects on susceptible populations. In some cases, patients can survive after disease. However, the adverse effects of these drugs may lead to morbidity and mortality later. In this review, drugs used against COVID-19 in clinics, their mechanisms of action and possible adverse effects on susceptible populations will be discussed.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/adverse effects , Humans , Pandemics , SARS-CoV-2
19.
Toxicol Mech Methods ; 32(8): 597-605, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35321620

ABSTRACT

Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine disrupting chemicals (EDCs) that are abundantly used in polyvinyl chloride plastics, polycarbonates and epoxy resins. Prenatal and early postnatal exposures to EDCs are suggested to be more critical. Such exposures can lead to reprotoxic effects, hormonal and metabolic consequences in adulthood. Moreover, combined exposure to different EDCs can lead to more serious adverse effects, some of which cannot be predicted by examining their individual toxicity profiles. This study aimed to evaluate effects of single and combined prenatal and lactational exposures to BPA and/or DEHP on female reproductive hormones and ovarian follicle development. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (received vehicle only); DEHP (30 mg/kg/day); BPA (50 mg/kg/day) and BPA + DEHP (30 mg/kg/day DEHP; 50 mg/kg/day BPA) through 6-21 gestational days and lactation by intra-gastric lavage. Female offspring (n = 6/group) were fed until the end of twelfth postnatal week and then euthanized. Reproductive hormones, ovarian follicle numbers and ovarian development were determined. Plasma testosterone and estradiol levels of BPA and BPA + DEHP groups were significantly lower than control. In BPA group, the number of tertiary ovarian follicles decreased significantly compared to control. In the combined exposure group, the number of corpus luteum (29%), as well as the number of primordial follicles (36%), showed marked decreases compared to control group. It can be suggested that early life exposure to BPA and DEHP may cause late life adverse effects in female reproductive system, especially after combined exposure.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds , Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Female , Humans , Lactation , Ovarian Follicle , Phenols , Phthalic Acids , Plastics , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Sprague-Dawley , Testosterone
20.
Int J Environ Health Res ; 32(4): 902-915, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32787440

ABSTRACT

Bisphenol A (BPA) and phthalates are abundantly used endocrine disrupting chemicals (EDCs). The aim of this study was to evaluate the effects of single and combined exposures to BPA and/or di(2-ethylhexyl) phthalate (DEHP) in prenatal and lactational period on rat male reproductive system in later stages of life. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (corn oil); DEHP (30 mg/kg/day); BPA (50 mg/kg/day); and BPA+ DEHP (30 mg/kg/day DEHP and 50 mg/kg/day BPA). Groups exposed to EDCs through 6-21 gestational days and lactation period by intragastric lavage. Male offspring (n = 6/group) from each mother were fed till adulthood and were then euthanized. Later, reproductive hormones, sperm parameters, and oxidative stress parameters were determined. In conclusion, we can suggest that prenatal and lactational exposure to BPA and DEHP may cause adverse effects in male reproductive system in later stages of life especially after combined exposure.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds , Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Female , Genitalia, Male , Lactation , Male , Phenols , Phthalic Acids , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...