Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(11): eade7109, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36921038

ABSTRACT

Estradiol (17[Formula: see text]-E2) is implicated in higher arrhythmia risk of women with congenital or acquired long-QT syndrome (LQTS) compared to men. However, the underlying mechanisms remain poorly understood, and little is known about the impact of LQTS-associated mutations. We show that 17[Formula: see text]-E2 inhibits the human cardiac Kv7.1/KCNE1 channel expressed in Xenopus oocytes. We find that the 17[Formula: see text]-E2 effect depends on the Kv7.1 to KCNE1 stoichiometry, and we reveal a critical function of the KCNE1 carboxyl terminus for the effect. LQTS-associated mutations in the KCNE1 carboxyl terminus show a range of responses to 17[Formula: see text]-E2, from a wild-type like response to impaired or abolished response. Together, this study increases our understanding of the mechanistic basis for 17[Formula: see text]-E2 inhibition of Kv7.1/KCNE1 and demonstrates mutation-dependent responses to 17[Formula: see text]-E2. These findings suggest that the 17[Formula: see text]-E2 effect on Kv7.1/KCNE1 might contribute to the higher arrhythmia risk of women, particularly in carriers with specific LQTS-associated mutations.


Subject(s)
Long QT Syndrome , Potassium Channels, Voltage-Gated , Male , Humans , Female , Potassium Channels, Voltage-Gated/genetics , Mutation , Long QT Syndrome/genetics , Heart , Heterozygote
SELECTION OF CITATIONS
SEARCH DETAIL
...