Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1547, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707436

ABSTRACT

Hypertension, exercise, and pregnancy are common triggers of cardiac remodeling, which occurs primarily through the hypertrophy of individual cardiomyocytes. During hypertrophy, stress-induced signal transduction increases cardiomyocyte transcription and translation, which promotes the addition of new contractile units through poorly understood mechanisms. The cardiomyocyte microtubule network is also implicated in hypertrophy, but via an unknown role. Here, we show that microtubules are indispensable for cardiac growth via spatiotemporal control of the translational machinery. We find that the microtubule motor Kinesin-1 distributes mRNAs and ribosomes along microtubule tracks to discrete domains within the cardiomyocyte. Upon hypertrophic stimulation, microtubules redistribute mRNAs and new protein synthesis to sites of growth at the cell periphery. If the microtubule network is disrupted, mRNAs and ribosomes collapse around the nucleus, which results in mislocalized protein synthesis, the rapid degradation of new proteins, and a failure of growth, despite normally increased translation rates. Together, these data indicate that mRNAs and ribosomes are actively transported to specific sites to facilitate local translation and assembly of contractile units, and suggest that properly localized translation - and not simply translation rate - is a critical determinant of cardiac hypertrophy. In this work, we find that microtubule based-transport is essential to couple augmented transcription and translation to productive cardiomyocyte growth during cardiac stress.


Subject(s)
Cardiomegaly/pathology , Microtubules/metabolism , Myocytes, Cardiac/pathology , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Ribosomes/metabolism , Animals , Atrial Remodeling/physiology , Biological Transport/physiology , Cells, Cultured , Humans , Kinesins/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Signal Transduction/physiology , Ventricular Remodeling/physiology
2.
Biophys J ; 119(7): 1402-1415, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32898478

ABSTRACT

Sequence selectivity is a critical attribute of DNA-binding ligands and underlines the need for detailed molecular descriptions of binding in representative sequence contexts. We investigated the binding and volumetric properties of DB1976, a model bis(benzimidazole)-selenophene diamidine compound with emerging therapeutic potential in acute myeloid leukemia, debilitating fibroses, and obesity-related liver dysfunction. To sample the scope of cognate DB1976 target sites, we evaluated three dodecameric duplexes spanning >103-fold in binding affinity. The attendant changes in partial molar volumes varied substantially, but not in step with binding affinity, suggesting distinct modes of interactions in these complexes. Specifically, whereas optimal binding was associated with loss of hydration water, low-affinity binding released more hydration water. Explicit-atom molecular dynamics simulations showed that minor groove binding perturbed the conformational dynamics and hydration at the termini and interior of the DNA in a sequence-dependent manner. The impact of these distinct local dynamics on hydration was experimentally validated by domain-specific interrogation of hydration with salt, which probed the charged axial surfaces of oligomeric DNA preferentially over the uncharged termini. Minor groove recognition by DB1976, therefore, generates dynamically distinct domains that can make favorable contributions to hydration release in both high- and low-affinity binding. Because ligand binding at internal sites of DNA oligomers modulates dynamics at the termini, the results suggest both short- and long-range dynamic effects along the DNA target that can influence their effectiveness as low-MW competitors of protein binding.


Subject(s)
DNA , Water , Binding Sites , Ligands , Molecular Dynamics Simulation , Nucleic Acid Conformation
3.
Biophys Chem ; 245: 6-16, 2019 02.
Article in English | MEDLINE | ID: mdl-30513446

ABSTRACT

Linear heterocyclic cations are interesting DNA minor groove ligands due to their lack of isohelical curvature classically associated with groove-binding compounds. We determined the DNA binding properties of four related dications harboring a linear indole-biphenyl core: the diamidine DB1883, a ditetrahydropyrimidine derivative (DB1804), and their monocationic counterparts (DB1944 and DB2627). These compounds exhibit heterogeneity in binding in accordance with their structures. Whereas the monocations exhibit salt-sensitive 1:1 binding to the duplex 5'-CGCGAATTCGCG-3' (A2T2), the dications show a marked preference for a salt-insensitive 2:1 complex. The two binding modes are differentially modulated by salt and specific non-ionic co-solutes. For both dications, 2-methyl-2,4-pentanediol enforces 1:1 binding as observed crystallographically. Fluorescence quenching studies show self-association without DNA in a relative order that is correlated with preference for the 2:1 complex. The data support a structure-binding relationship in which favorable cation-π interactions drive dimer formation via antiparallel stacking of the linear indole-biphenyl cation motif.


Subject(s)
Biphenyl Compounds/chemistry , DNA/chemistry , Indoles/chemistry , Binding Sites , Cations/chemistry , Crystallography , Dimerization , Fluorescence , Ligands , Molecular Structure , Structure-Activity Relationship
4.
J Biol Chem ; 292(39): 16044-16054, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28790174

ABSTRACT

The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.


Subject(s)
DNA/metabolism , Models, Molecular , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Binding Sites , DNA/chemistry , DNA Footprinting , Dimerization , Gene Deletion , Kinetics , Mice , Molecular Dynamics Simulation , Mutation , Nucleic Acid Conformation , Nucleotide Motifs , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Trans-Activators/chemistry , Trans-Activators/genetics
5.
Biophys Chem ; 231: 95-104, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28363467

ABSTRACT

Previous investigations of sequence-specific DNA binding by model minor groove-binding compounds showed that the ligand/DNA complex was destabilized in the presence of compatible co-solutes. Inhibition was interpreted in terms of osmotic stress theory as the uptake of significant numbers of excess water molecules from bulk solvent upon complex formation. Here, we interrogated the AT-specific DNA complex formed with the symmetric heterocyclic diamidine DB1976 as a model for minor groove DNA recognition using both ionic (NaCl) and non-ionic cosolutes (ethylene glycol, glycine betaine, maltose, nicotinamide, urea). While the non-ionic cosolutes all destabilized the ligand/DNA complex, their quantitative effects were heterogeneous in a cosolute- and salt-dependent manner. Perturbation with NaCl in the absence of non-ionic cosolute showed that preferential hydration water was released upon formation of the DB1976/DNA complex. As salt probes counter-ion release from charged groups such as the DNA backbone, we propose that the preferential hydration uptake in DB1976/DNA binding observed in the presence of osmolytes reflects the exchange of preferentially bound cosolute with hydration water in the environs of the bound DNA, rather than a net uptake of hydration waters by the complex.


Subject(s)
DNA/chemistry , Pentamidine/chemistry , DNA/metabolism , Molecular Dynamics Simulation , Osmotic Pressure , Pentamidine/metabolism , Sodium Chloride/chemistry , Static Electricity , Thermodynamics , Water/chemistry
6.
J Phys Chem B ; 121(13): 2748-2758, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28296403

ABSTRACT

The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. Unlike other ETS homologues, such as Ets-1, DNA recognition by PU.1 is highly sensitive to its osmotic environment due to excess interfacial hydration in the complex. To investigate interfacial hydration in the two homologues, we mutated a conserved tyrosine residue, which is exclusively engaged in coordinating a well-defined water contact between the protein and DNA among ETS proteins, to phenylalanine. The loss of this water-mediated contact blunted the osmotic sensitivity of PU.1/DNA binding, but did not alter binding under normo-osmotic conditions, suggesting that PU.1 has evolved to maximize osmotic sensitivity. The homologous mutation in Ets-1, which was minimally sensitive to osmotic stress due to a sparsely hydrated interface, reduced DNA-binding affinity at normal osmolality but the complex became stabilized by osmotic stress. Molecular dynamics simulations of wildtype and mutant PU.1 and Ets-1 in their free and DNA-bound states, which recapitulated experimental features of the proteins, showed that abrogation of this tyrosine-mediated water contact perturbed the Ets-1/DNA complex not through disruption of interfacial hydration, but by inhibiting local dynamics induced specifically in the bound state. Thus, a configurationally identical water-mediated contact plays mechanistically distinct roles in mediating DNA recognition by structurally homologous ETS transcription factors.


Subject(s)
DNA/chemistry , Proto-Oncogene Proteins c-ets/chemistry , Humans , Molecular Dynamics Simulation , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...