Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 18(9): 5349-5359, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35972734

ABSTRACT

The coupled-cluster (CC) singles and doubles with perturbative triples [CCSD(T)] method is frequently referred to as the "gold standard" of modern computational chemistry. However, the high computational cost of CCSD(T) [O(N7)], where N is the number of basis functions, limits its applications to small-sized chemical systems. To address this problem, efficient implementations of linear-scaling coupled-cluster methods, which employ the systematic molecular fragmentation (SMF) approach, are reported. In this study, we aim to do the following: (1) To achieve exact linear scaling and to obtain a pure ab initio approach, we revise the handling of nonbonded interactions in the SMF approach, denoted by LSSMF. (2) A new fragmentation algorithm, which yields smaller-sized fragments, that better fits high-level CC methods is introduced. (3) A modified nonbonded fragmentation scheme is proposed to enhance the existent algorithm. Performances of the LSSMF-CC approaches, such as LSSMF-CCSD(T), are compared with their canonical versions for a set of alkane molecules, CnH2n+2 (n = 6-10), which includes 142 molecules. Our results demonstrate that the LSSMF approach introduces negligible errors compared with the canonical methods; mean absolute errors (MAEs) are between 0.20 and 0.59 kcal mol-1 for LSSMF(3,1)-CCSD(T). For a larger alkanes set (L12), CnH2n+2 (n = 50-70), the performance of LSSMF for the second-order perturbation theory (MP2) is investigated. For the L12 set, various bonded and nonbonded levels are considered. Our results demonstrate that the combination of bonded level 6 with nonbonded level 2, LSSMF(6,2), provides very accurate results for the MP2 method with a MAE value of 0.32 kcal mol-1. The LSSMF(6,2) approach yields more than a 26-fold reduction in errors compared with LSSMF(3,1). Hence, we obtain substantial improvements over the original SMF approach. To illustrate the efficiency and applicability of the LSSMF-CCSD(T) approach, we consider an alkane molecule with 10,004 atoms. For this molecule, the LSSMF(3,1)-CCSD(T)/cc-pVTZ energy computation, on a Linux cluster with 100 nodes, 4 cores, and 5 GB of memory provided to each node, is performed just in ∼24 h. As a second test, we consider a biomolecular complex (PDB code: 1GLA), which includes 10,488 atoms, to assess the efficiency of the LSSMF approach. The LSSMF(3,1)-FNO-CCSD(T)/cc-pVTZ energy computation is completed in ∼7 days for the biomolecular complex. Hence, our results demonstrate that the LSSMF-CC approaches are very efficient. Overall, we conclude the following: (1) The LSSMF(m, n)-CCSD(T) methods can be reliably used for large-scale chemical systems, where the canonical methods are not computationally affordable. (2) The accuracy of bonded level 3 is not satisfactory for large chemical systems. (3) For high-accuracy studies, bonded level 5 (or higher) and nonbonded level 2 should be employed.


Subject(s)
Algorithms , Alkanes
2.
J Chem Phys ; 156(4): 044801, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35105088

ABSTRACT

MacroQC is a quantum chemistry software for high-accuracy computations and large-scale chemical applications. MacroQC package features energy and analytic gradients for a broad range of many-body perturbation theory and coupled-cluster (CC) methods. Even when compared to commercial quantum chemistry software, analytical gradients of second-order perturbation theory, CC singles and doubles (CCSD), and CCSD with perturbative triples approaches are particularly efficient. MacroQC has a number of peculiar features, such as analytic gradients with the density-fitting approach, orbital-optimized methods, extended Koopman's theorem, and molecular fragmentation approaches. MacroQC provides a limited level of interoperability with some other software. The plugin system of MacroQC allows external interfaces in a developer-friendly way. The linear-scaling systematic molecular fragmentation (LSSMF) method is another distinctive feature of the MacroQC software. The LSSMF method enables one to apply high-level post-Hartree-Fock methods to large-sized molecular systems. Overall, we feel that the MacroQC program will be a valuable tool for wide scientific applications.

3.
J Chem Theory Comput ; 17(12): 7648-7656, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34724787

ABSTRACT

Accurate computation of electron affinities (EAs), within 0.10 eV, is one of the most challenging problems in modern computational quantum chemistry. The extended Koopmans' theorem (EKT) enables direct computations of electron affinities (EAs) from any level of the theory. In this research, the EKT approach based on the coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method is applied to computations of EAs for the first time. For efficiency, the density-fitting (DF) technique is used for two-electron integrals. Further, the EKT-CCSD(T) method is applied to three test sets of atoms and closed- and open-shell molecules, denoted A16, C10, and O33, respectively, for comparison with the experimental electron affinities. For the A16, C10, and O33 sets, the EKT-CCSD(T) approach, along with the aug-cc-pV5Z basis set, provide mean absolute errors (MAEs) of 0.05, 0.08, and 0.09 eV, respectively. Hence, our results demonstrate that high-accuracy computations of EAs can be achieved with the EKT-CCSD(T) approach. Further, when the EKT-CCSD(T) approach is not computationally affordable, the EKT-MP2.5, EKT-LCCD, and EKT-CCSD methods can be considered, and their results are also reasonably accurate. The huge advantage of the EKT method for the computation of IPs is that it comes for free in an analytic gradient computation. Hence, one needs neither separate computations for neutral and ionic species, as in the case of common approaches, nor additional efforts to obtain IPs, as in the case of equation-of-motion approaches. Overall, we believe that the present research may open new avenues in EA computations.

SELECTION OF CITATIONS
SEARCH DETAIL
...