Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(22): 9750-9759, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780915

ABSTRACT

Humans are known to be a continuous and potent indoor source of volatile organic compounds (VOCs). However, little is known about how personal hygiene, in terms of showering frequency, can influence these emissions and their impact on indoor air chemistry involving ozone. In this study, we characterized the VOC composition of the air in a controlled climate chamber (22.5 m3 with an air change rate at 3.2 h-1) occupied by four male volunteers on successive days under ozone-free (∼0 ppb) and ozone-present (37-40 ppb) conditions. The volunteers either showered the evening prior to the experiments or skipped showering for 24 and 48 h. Reduced shower frequency increased human emissions of gas-phase carboxylic acids, possibly originating from skin bacteria. With ozone present, increasing the number of no-shower days enhanced ozone-skin surface reactions, yielding higher levels of oxidation products. Wearing the same clothing over several days reduced the level of compounds generated from clothing-ozone reactions. When skin lotion was applied, the yield of the skin ozonolysis products decreased, while other compounds increased due to ozone reactions with lotion ingredients. These findings help determine the degree to which personal hygiene choices affect the indoor air composition and indoor air exposures.


Subject(s)
Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Humans , Ozone/analysis , Volatile Organic Compounds/analysis , Male , Hygiene , Adult
2.
Science ; 377(6610): 1071-1077, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048928

ABSTRACT

Hydroxyl (OH) radicals are highly reactive species that can oxidize most pollutant gases. In this study, high concentrations of OH radicals were found when people were exposed to ozone in a climate-controlled chamber. OH concentrations calculated by two methods using measurements of total OH reactivity, speciated alkenes, and oxidation products were consistent with those obtained from a chemically explicit model. Key to establishing this human-induced oxidation field is 6-methyl-5-hepten-2-one (6-MHO), which forms when ozone reacts with the skin-oil squalene and subsequently generates OH efficiently through gas-phase reaction with ozone. A dynamic model was used to show the spatial extent of the human-generated OH oxidation field and its dependency on ozone influx through ventilation. This finding has implications for the oxidation, lifetime, and perception of chemicals indoors and, ultimately, human health.


Subject(s)
Air Pollutants , Environmental Exposure , Hydroxyl Radical , Ozone , Air Conditioning , Air Pollutants/adverse effects , Alkenes , Humans , Hydroxyl Radical/analysis , Hydroxyl Radical/metabolism , Oxidation-Reduction , Ozone/adverse effects , Ventilation
3.
Sci Total Environ ; 833: 155241, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421492

ABSTRACT

Carbon dioxide (CO2) and methane (CH4) are important greenhouse gases in the atmosphere and have large impacts on Earth's radiative forcing and climate. Their natural and anthropogenic emissions have often been in focus, while the role of human metabolic emissions has received less attention. In this study, exhaled, dermal and whole-body CO2 and CH4 emission rates from a total of 20 volunteers were quantified under various controlled environmental conditions in a climate chamber. The whole-body CO2 emissions increased with temperature. Individual differences were the most important factor for the whole-body CH4 emissions. Dermal emissions of CO2 and CH4 only contributed ~3.5% and ~5.5% to the whole-body emissions, respectively. Breath measurements conducted on 24 volunteers in a companion study identified one third of the volunteers as CH4 producers (exhaled CH4 exceeded 1 ppm above ambient level). The exhaled CH4 emission rate of these CH4 producers (4.03 ± 0.71 mg/h/person, mean ± one standard deviation) was ten times higher than that of the rest of the volunteers (non-CH4 producers; 0.41 ± 0.45 mg/h/person). With increasing global population and the expected large reduction in global anthropogenic carbon emissions in the next decades, metabolic emissions of CH4 (although not CO2) from humans may play an increasing role in regional and global carbon budgets.


Subject(s)
Greenhouse Gases , Methane , Atmosphere , Carbon Dioxide/analysis , Humans , Methane/analysis , Nitrous Oxide , Temperature
4.
Environ Sci Technol ; 56(8): 4838-4848, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35389619

ABSTRACT

Human-emitted volatile organic compounds (VOCs) are mainly from breath and the skin. In this study, we continuously measured VOCs in a stainless-steel environmentally controlled climate chamber (22.5 m3, air change rate at 3.2 h-1) occupied by four seated human volunteers using proton transfer reaction time-of-flight mass spectrometry and gas chromatography mass spectrometry. Experiments with human whole body, breath-only, and dermal-only emissions were performed under ozone-free and ozone-present conditions. In addition, the effect of temperature, relative humidity, clothing type, and age was investigated for whole-body emissions. Without ozone, the whole-body total emission rate (ER) was 2180 ± 620 µg h-1 per person (p-1), dominated by exhaled chemicals. The ERs of oxygenated VOCs were positively correlated with the enthalpy of the air. Under ozone-present conditions (∼37 ppb), the whole-body total ER doubled, with the increase mainly driven by VOCs resulting from skin surface lipids/ozone reactions, which increased with relative humidity. Long clothing (more covered skin) was found to reduce the total ERs but enhanced certain chemicals related to the clothing. The ERs of VOCs derived from this study provide a valuable data set of human emissions under various conditions and can be used in models to better predict indoor air quality, especially for highly occupied environments.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Ozone/chemistry
5.
Environ Sci Technol ; 55(20): 13614-13624, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34591444

ABSTRACT

People influence indoor air chemistry through their chemical emissions via breath and skin. Previous studies showed that direct measurement of total OH reactivity of human emissions matched that calculated from parallel measurements of volatile organic compounds (VOCs) from breath, skin, and the whole body. In this study, we determined, with direct measurements from two independent groups of four adult volunteers, the effect of indoor temperature and humidity, clothing coverage (amount of exposed skin), and indoor ozone concentration on the total OH reactivity of gaseous human emissions. The results show that the measured concentrations of VOCs and ammonia adequately account for the measured total OH reactivity. The total OH reactivity of human emissions was primarily affected by ozone reactions with organic skin-oil constituents and increased with exposed skin surface, higher temperature, and higher humidity. Humans emitted a comparable total mixing ratio of VOCs and ammonia at elevated temperature-low humidity and elevated temperature-high humidity, with relatively low diversity in chemical classes. In contrast, the total OH reactivity increased with higher temperature and higher humidity, with a larger diversity in chemical classes compared to the total mixing ratio. Ozone present, carbonyl compounds were the dominant reactive compounds in all of the reported conditions.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Adult , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Clothing , Environmental Monitoring , Humans , Humidity , Ozone/analysis , Temperature , Volatile Organic Compounds/analysis
6.
Environ Sci Technol ; 55(1): 149-159, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33295177

ABSTRACT

Humans are a potent, mobile source of various volatile organic compounds (VOCs) in indoor environments. Such direct anthropogenic emissions are gaining importance, as those from furnishings and building materials have become better regulated and energy efficient homes may reduce ventilation. While previous studies have characterized human emissions in indoor environments, the question remains whether VOCs remain unidentified by current measuring techniques. In this study conducted in a climate chamber occupied by four people, the total OH reactivity of air was quantified, together with multiple VOCs measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and fast gas chromatography-mass spectrometry (fast-GC-MS). Whole-body, breath, and dermal emissions were assessed. The comparison of directly measured OH reactivity and that of the summed reactivity of individually measured species revealed no significant shortfall. Ozone exposure (37 ppb) was found to have little influence on breath OH reactivity but enhanced dermal OH reactivity significantly. Without ozone, the whole-body OH reactivity was dominated by breath emissions, mostly isoprene (76%). With ozone present, OH reactivity nearly doubled, with the increase being mainly caused by dermal emissions of mostly carbonyl compounds (57%). No significant difference in total OH reactivity was observed for different age groups (teenagers/young adults/seniors) without ozone. With ozone present, the total OH reactivity decreased slightly with increasing age.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Adolescent , Air Pollutants/analysis , Climate , Construction Materials , Environmental Monitoring , Humans , Ventilation , Volatile Organic Compounds/analysis , Young Adult
7.
Indoor Air ; 30(6): 1213-1228, 2020 11.
Article in English | MEDLINE | ID: mdl-32424858

ABSTRACT

With the gradual reduction of emissions from building products, emissions from human occupants become more dominant indoors. The impact of human emissions on indoor air quality is inadequately understood. The aim of the Indoor Chemical Human Emissions and Reactivity (ICHEAR) project was to examine the impact on indoor air chemistry of whole-body, exhaled, and dermally emitted human bioeffluents under different conditions comprising human factors (t-shirts/shorts vs long-sleeve shirts/pants; age: teenagers, young adults, and seniors) and a variety of environmental factors (moderate vs high air temperature; low vs high relative humidity; presence vs absence of ozone). A series of human subject experiments were performed in a well-controlled stainless steel climate chamber. State-of-the-art measurement technologies were used to quantify the volatile organic compounds emitted by humans and their total OH reactivity; ammonia, nanoparticle, fluorescent biological aerosol particle (FBAP), and microbial emissions; and skin surface chemistry. This paper presents the design of the project, its methodologies, and preliminary results, comparing identical measurements performed with five groups, each composed of 4 volunteers (2 males and 2 females). The volunteers wore identical laundered new clothes and were asked to use the same set of fragrance-free personal care products. They occupied the ozone-free (<2 ppb) chamber for 3 hours (morning) and then left for a 10-min lunch break. Ozone (target concentration in occupied chamber ~35 ppb) was introduced 10 minutes after the volunteers returned to the chamber, and the measurements continued for another 2.5 hours. Under a given ozone condition, relatively small differences were observed in the steady-state concentrations of geranyl acetone, 6MHO, and 4OPA between the five groups. Larger variability was observed for acetone and isoprene. The absence or presence of ozone significantly influenced the steady-state concentrations of acetone, geranyl acetone, 6MHO, and 4OPA. Results of replicate experiments demonstrate the robustness of the experiments. Higher repeatability was achieved for dermally emitted compounds and their reaction products than for constituents of exhaled breath.


Subject(s)
Air Pollution, Indoor , Adolescent , Aerosols , Aged , Ammonia , Butadienes , Environmental Monitoring , Exhalation , Female , Hemiterpenes , Humans , Male , Odorants , Ozone , Terpenes , Volatile Organic Compounds , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...