Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(20): 28998-29015, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684642

ABSTRACT

In this paper, we introduce a pulse characterization technique that is free of phase-matching constraints, exploiting transient absorption in solids as an ultrafast optical switch. Based on a pump-probe setup, this technique uses pump pulses of sufficient intensity to induce the switch, while the pulses to characterize are probing the transmissivity drop of the photoexcited material. This enables the characterization of low-intensity ultra-broadband pulses at the detection limit of the spectrometer and within the transparency range of the solid. For example, by using zinc selenide (ZnSe), pulses with wavelengths from 0.5 to 20 µm can be characterized, denoting five octaves of spectral range. Using ptychography, we retrieve the temporal profiles of both the probe pulse and the switch. To demonstrate this approach, we measure ultrashort pulses from a titanium-sapphire (Ti-Sa) amplifier, which are compressed using a hollow core fiber setup, as well as infrared to mid-infrared pulses generated from an optical parametric amplifier (OPA). The characterized pulses are centered at wavelengths of 0.77, 1.53, 1.75, 4, and 10 µm, down to sub-two optical cycles duration, exceeding an octave of bandwidth, and with energy as low as a few nanojoules.

2.
Opt Express ; 25(22): 27706-27714, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092241

ABSTRACT

Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 µm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

3.
Opt Express ; 24(21): 24225-24231, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828252

ABSTRACT

Generating mid infrared (MIR) pulses by difference frequency generation (DFG) is often a trade-off between the maximum stability given by all-inline intra-pulse arrangements and the independent control of pulse parameters with inter-pulse pump-probe like scenarios. We propose a coalescence between both opposing approaches by realizing an all-inline inter-pulse DFG scheme employing a 4-f setup. This allows independent manipulation of the amplitude, delay and polarization of the two corresponding spectral side bands of a supercontinuum source while maintaining 20 attoseconds jitter without any feedback stabilization. After filamentation in air, the broadened Ti:Sa spectrum is tailored in a 4-f setup to generate tunable MIR pulses. In this manner, 2 µm, 4.8 µJ, 26.5 fs and carrier-envelope-phase (CEP) stabilized pulses are generated in a single DFG stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...