Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol ; 269(6 Pt 1): G874-82, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8572219

ABSTRACT

The involvement of tyrosine phosphorylation in the regulation of epithelial cell Cl- secretion is unknown. Therefore, the purpose of these studies was to determine if tyrosine kinase activation was involved in the regulation of Cl- secretion, using the tyrosine kinase inhibitors, genistein and tyrphostin 47, and human intestinal epithelial cells (T84 cells) as an intestinal Cl- secretory model. Genistein rapidly but reversibly stimulated sustained apical Cl- secretion in monolayers of T84 cells without increasing intracellular cyclic nucleotides or Ca2+ levels. Tyrphostin 47 also stimulated Cl- secretion in T84 monolayers, although it was short-lived. Transfection experiments in 3T3 fibroblasts and IEC-6 intestinal cells utilizing wild-type cystic fibrosis transmembrane conductance regulator (CFTR) showed that genistein and tyrphostin 47 stimulated 125I efflux only in CFTR-transfected cells and not in CFTR-negative cells. Thus genistein- and tyrphostin 47-stimulated Cl- secretion involved CFTR. Genistein also acted synergistically with the Ca(2+)- and protein kinase C-dependent acetylcholine analogue, carbachol, to stimulate Cl- secretion in T84 monolayers. However, the Cl- secretory response to saturating concentrations of the adenosine 3',5'-cyclic monophosphate (cAMP) agonist, forskolin, or the guanosine 3',5'-cyclic monophosphate (cGMP) agonist, Escherichia coli heat-stable enterotoxin, was not further enhanced by genistein. Although the mechanism of activation of Cl- secretion is unclear, these data suggest that tyrosine kinase activity limits basal Cl- secretion in T84 cells and that inhibition of T84 cell tyrosine kinase(s) stimulates apical membrane Cl- secretion, most likely through activation of the CFTR-Cl- channel. Moreover, genistein does not itself act through cAMP or cGMP elevation but appears to share a common Cl- secretory pathway with cyclic nucleotide-dependent agonists, whereas it augments the secretory responses to a Ca(2+)- and protein kinase C-dependent agonist.


Subject(s)
Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Intestinal Mucosa/metabolism , Isoflavones/pharmacology , Nitriles/pharmacology , Phenols/pharmacology , Tyrphostins , Calcium/metabolism , Cell Line , Cell Membrane/metabolism , Chloride Channels/physiology , Genistein , Humans , Intestinal Mucosa/cytology , Intracellular Membranes/metabolism , Nucleotides, Cyclic/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...