Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 363(1501): 2271-84, 2008 Jul 12.
Article in English | MEDLINE | ID: mdl-18048299

ABSTRACT

This paper describes variability in trends of annual tree growth at several locations in the high latitudes of Eurasia, providing a wide regional comparison over a 2000-year period. The study focuses on the nature of local and widespread tree-growth responses to recent warming seen in instrumental observations, available in northern regions for periods ranging from decades to a century. Instrumental temperature data demonstrate differences in seasonal scale of Eurasian warming and the complexity and spatial diversity of tree-growing-season trends in recent decades. A set of long tree-ring chronologies provides empirical evidence of association between inter-annual tree growth and local, primarily summer, temperature variability at each location. These data show no evidence of a recent breakdown in this association as has been found at other high-latitude Northern Hemisphere locations. Using Kendall's concordance, we quantify the time-dependent relationship between growth trends of the long chronologies as a group. This provides strong evidence that the extent of recent widespread warming across northwest Eurasia, with respect to 100- to 200-year trends, is unprecedented in the last 2000 years. An equivalent analysis of simulated temperatures using the HadCM3 model fails to show a similar increase in concordance expected as a consequence of anthropogenic forcing.


Subject(s)
Greenhouse Effect , Models, Theoretical , Temperature , Trees/growth & development , Asia , Europe , Geography
2.
Ambio ; Spec No 12: 3-5, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12374056

ABSTRACT

The tundra-taiga boundary stretches for more than 13,400 km around the Northern Hemisphere and is probably the Earth's greatest vegetation transition. The trees that define the boundary have been sensitive to climate changes in the past and models of future vegetation distribution suggest a rapid and dramatic invasion of the tundra by the taiga. Such changes would generate both positive and negative feedbacks to the climate system and the balance could result in a net warming effect. However, the boundary is becoming increasingly affected by human activities that remove trees and degrade forest-tundra into tundra-like areas. Because of the vastness and remoteness of the tundra-taiga boundary, and of methodological problems such as problematic definitions and lack of standardized methods to record the location and characteristics of the ecotone, a project group has been established under the auspices of the International Arctic Science Committee (IASC). This paper summarizes the initial output of the group and focuses on our uncertainties in understanding the current processes at the tundra-taiga boundary and the conflicts between model predictions of changes in the location of the boundary and contrasting recently observed changes due to human activities. Finally, we present recommendations for a coordinated international approach to the problem and invite the international community to join us in reducing the uncertainties about the dynamics of the ecotone and their consequences.


Subject(s)
Cold Climate , Conservation of Natural Resources/methods , Ecosystem , Environmental Health , Research/organization & administration , Trees/physiology , Arctic Regions , Conservation of Natural Resources/trends , Forecasting , Greenhouse Effect , Health Priorities , Humans , International Cooperation , Needs Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...