Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(8): e0289366, 2023.
Article in English | MEDLINE | ID: mdl-37527254

ABSTRACT

Evolutionary models are used to study the self-organisation of collective action, often incorporating population structure due to its ubiquitous presence and long-known impact on emerging phenomena. We investigate the evolution of multiplayer cooperation in mobile structured populations, where individuals move strategically on networks and interact with those they meet in groups of variable size. We find that the evolution of multiplayer cooperation primarily depends on the network topology and movement cost while using different stochastic update rules seldom influences evolutionary outcomes. Cooperation robustly co-evolves with movement on complete networks and structure has a partially detrimental effect on it. These findings contrast an established principle from evolutionary graph theory that cooperation can only emerge under some update rules and if the average degree is lower than the reward-to-cost ratio and the network far from complete. We find that group-dependent movement erases the locality of interactions, suppresses the impact of evolutionary structural viscosity on the fitness of individuals, and leads to assortative behaviour that is much more powerful than viscosity in promoting cooperation. We analyse the differences remaining between update rules through a comparison of evolutionary outcomes and fixation probabilities.


Subject(s)
Biological Evolution , Game Theory , Humans , Cooperative Behavior , Reward , Probability
3.
BMC Public Health ; 22(1): 138, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35057770

ABSTRACT

BACKGROUND: The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only. METHODS: We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics). RESULTS: This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high. CONCLUSIONS: To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation.


Subject(s)
COVID-19 , Pandemics , Epidemiological Models , Humans , Quarantine , SARS-CoV-2
4.
PeerJ ; 8: e10151, 2020.
Article in English | MEDLINE | ID: mdl-33362952

ABSTRACT

In 2005, a chikungunya virus outbreak devastated the tropical island of Reunion, infecting a third of the total population. Motivated by the Reunion Island case study, we investigate the theoretic potential for two intervention measures under both voluntary and mandatory protocols to control a vector-borne disease when there is risk of the disease becoming endemic. The first measure uses insect repellent to prevent mosquito bites, while the second involves emigrating to the neighboring Mauritius Island to avoid infection. There is a threshold on the cost of using repellent above which both voluntary and mandatory regimes find it optimal to forgo usage. Below that threshold, mandatory usage protocols will eradicate the disease; however, voluntary adoption leaves the disease at a small endemic level. Emigrating from the island to avoid infection results in a tragedy-of-the-commons effect: while being potentially beneficial to specific susceptible individuals, the remaining islanders paradoxically face a higher risk of infection. Mandated relocation of susceptible individuals away from the epidemic is viable only if the cost of this relocation is several magnitudes lower than the cost of infection. Since this assumption is unlikely to hold for chikungunya, it is optimal to discourage such emigration for the benefit of the entire population. An underlying assumption about the conservation of human-vector encounter rates in mosquito biting behavior informs our conclusions and may warrant additional experimental verification.

5.
Proc Math Phys Eng Sci ; 476(2241): 20200354, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33071586

ABSTRACT

Typhoid fever has long established itself endemically in rural Ghana despite the availability of cheap and effective vaccines. We used a game-theoretic model to investigate whether the low vaccination coverage in Ghana could be attributed to rational human behaviour. We adopted a version of an epidemiological model of typhoid fever dynamics, which accounted not only for chronic life-long carriers but also for a short-cycle transmission in the immediate environment and a long-cycle transmission via contamination of the water supply. We calibrated the model parameters based on the known incidence data. We found that unless the (perceived) cost of vaccination is negligible, the individually optimal population vaccination rate falls significantly short of the societally optimal population vaccination rate needed to reach herd immunity. We expressed both the herd immunity and the optimal equilibrium vaccination rates in terms of only a few observable parameters such as the incidence rate, demographics, vaccine waning rate and the perceived cost of vaccination relative to the cost of infection. This allowed us not to rely on other uncertain epidemiological model parameters and, in particular, to bypass uncertainties about the role of the carriers in the transmission.

6.
J Theor Biol ; 484: 110002, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31513801

ABSTRACT

The dispersal of individuals within an animal population will depend upon local properties intrinsic to the environment that differentiate superior from inferior regions as well as properties of the population. Competing concerns can either draw conspecifics together in aggregation, such as collective defence against predators, or promote dispersal that minimizes local densities, for instance to reduce competition for food. In this paper we consider a range of models of non-independent movement. We include established models, such as the ideal free distribution, but also develop novel models, such as the wheel. We also develop several ways to combine different models to create a flexible model of addressing a variety of dispersal mechanisms. We further devise novel measures of movement coordination and show how to generate a population movement that achieves appropriate values of the measure specified. We find the value of these measures for each of the core models described, as well as discuss their use, and potential limitations, in discerning the underlying movement mechanisms. The movement framework that we develop is both of interest as a stand-alone process to explore movement, but also able to generate a variety of movement patterns that can be embedded into wider evolutionary models where movement is not the only consideration.


Subject(s)
Animal Distribution , Models, Biological , Animals , Biological Evolution , Ecosystem , Movement , Population Dynamics
7.
Proc Math Phys Eng Sci ; 475(2230): 20190399, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31736650

ABSTRACT

We model a mobile population interacting over an underlying spatial structure using a Markov movement model. Interactions take the form of public goods games, and can feature an arbitrary group size. Individuals choose strategically to remain at their current location or to move to a neighbouring location, depending upon their exploration strategy and the current composition of their group. This builds upon previous work where the underlying structure was a complete graph (i.e. there was effectively no structure). Here, we consider alternative network structures and a wider variety of, mainly larger, populations. Previously, we had found when cooperation could evolve, depending upon the values of a range of population parameters. In our current work, we see that the complete graph considered before promotes stability, with populations of cooperators or defectors being relatively hard to replace. By contrast, the star graph promotes instability, and often neither type of population can resist replacement. We discuss potential reasons for this in terms of network topology.

8.
Bull Math Biol ; 80(10): 2580-2599, 2018 10.
Article in English | MEDLINE | ID: mdl-30203140

ABSTRACT

Cholera is an acute gastro-intestinal infection that affects millions of people throughout the world each year, primarily but not exclusively in developing countries. Because of its public health ramifications, considerable mathematical attention has been paid to the disease. Here we consider one neglected aspect of combating cholera: personal participation in anti-cholera interventions. We construct a game-theoretic model of cholera in which individuals choose whether to participate in either vaccination or clean water consumption programs under assumed costs. We find that relying upon individual compliance significantly lowers the incidence of the disease as long as the cost of intervention is sufficiently low, but does not eliminate it. The relative costs of the measures determined whether a population preferentially adopts a single preventative measure or employs the measure with the strongest early adoption.


Subject(s)
Cholera/prevention & control , Models, Biological , Cholera/economics , Cholera/epidemiology , Cholera Vaccines/pharmacology , Cost-Benefit Analysis , Drinking Water/microbiology , Game Theory , Humans , Mathematical Concepts , Patient Compliance , Public Health Practice , Vaccination/statistics & numerical data
9.
Ecol Evol ; 8(5): 2471-2481, 2018 03.
Article in English | MEDLINE | ID: mdl-29531668

ABSTRACT

The ideal free distribution (IFD) requires that individuals can accurately perceive density-dependent habitat quality, while failure to discern quality differences below a given perception threshold results in distributions approaching spatial uniformity. Here, we investigate the role of population growth in restoring a nonideal population to the IFD. We place a simple model of discrete patch choice under limits to the resolution by which patch quality is perceived and include population growth driven by that underlying quality. Our model follows the population's distribution through both breeding and dispersal seasons when perception limits differ in their likely influence. We demonstrate that populations of perception limited movers can approximate an IFD provided sufficient population growth; however, the emergent IFD would be temporally inconstant and correspond to reproductive events. The time to emergence of the IFD during breeding is shorter under exponential growth than under logistic growth. The IFD during early colonization of a community persists longer when more patches are available to individuals. As the population matures and dispersal becomes increasingly random, there is an oscillation in the observance of IFD, with peaks most closely approximating the IFD occurring immediately after reproductive events, and higher reproductive rates producing distributions closer to the IFD.

10.
R Soc Open Sci ; 5(1): 171591, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29410863

ABSTRACT

Ebola virus disease (EVD) is a severe infection with an extremely high fatality rate spread through direct contact with body fluids. A promising Ebola vaccine (rVSV-ZEBOV) may soon become universally available. We constructed a game-theoretic model of Ebola incorporating individual decisions to vaccinate. We found that if a population adopts selfishly optimal vaccination strategies, then the population vaccination coverage falls negligibly short of the herd immunity level. We concluded that eradication of Ebola is feasible if voluntary vaccination programmes are coupled with focused public education efforts. We conducted uncertainty and sensitivity analysis to demonstrate that our findings do not depend on the choice of the epidemiological model parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...