Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20202020 May 28.
Article in English | MEDLINE | ID: mdl-32550519
2.
Curr Biol ; 29(8): 1324-1336.e6, 2019 04 22.
Article in English | MEDLINE | ID: mdl-30982652

ABSTRACT

Centrosomes, the major microtubule-organizing centers of animal cells, are essential for the assembly of a bipolar spindle during mitosis. Spindle defective-5 (SPD-5), the main scaffold protein of the centrosome matrix in Caenorhabditis elegans, forms a thin core around non-mitotic centrioles. Upon mitotic entry, the SPD-5-containing centrosome matrix expands in a Polo-like-kinase 1 (PLK-1)-dependent manner and this enables an enhanced microtubule nucleation activity during mitosis. How the non-mitotic centrosome core is formed and how this core facilitates robust SPD-5 expansion at mitotic entry remains unknown. Here, we present evidence that the coiled-coil protein pericentriolar matrix deficient-1 (PCMD-1) is necessary for the efficient loading of SPD-5, SPD-2, and PLK-1 to the non-mitotic centrosome core. Furthermore, we demonstrate that the absence of PCMD-1 disrupts pericentriolar material (PCM) recruitment and integrity. The expansion of centrosomes into spherical structures at the mitotic entry is compromised. We propose that PCMD-1 acts as a molecular platform for mitotic regulators and for components of the PCM, thereby allowing functional interactions between them, which in turn is necessary for the organization of the mitotic centrosome and, hence, spindle bipolarity.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Cell Cycle Proteins/genetics , Centrosome/physiology , Mitosis , Animals , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/metabolism , Mitosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...