Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Environ Microbiol Rep ; 16(3): e13254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725134

ABSTRACT

Arid and semi-arid areas are facing increasingly severe water deficits that are being intensified by global climate changes. Microbes associated with plants native to arid regions provide valuable benefits to plants, especially in water-stressed environments. In this study, we used 16S rDNA metabarcoding analysis to examine the bacterial communities in the bulk soil, rhizosphere and root endosphere of the plant Malva sylvestris L. in Morocco, along a gradient of precipitation. We found that the rhizosphere of M. sylvestris did not show significant differences in beta-diversity compared to bulk soil, although, it did display an increased degree of alpha-diversity. The endosphere was largely dominated by the genus Rhizobium and displayed remarkable variation between plants, which could not be attributed to any of the variables observed in this study. Overall, the effects of precipitation level were relatively weak, which may be related to the intense drought in Morocco at the time of sampling. The dominance of Rhizobium in a non-leguminous plant is particularly noteworthy and may permit the utilization of this bacterial taxon to augment drought tolerance; additionally, the absence of any notable selection of the rhizosphere of M. sylvestris suggests that it is not significatively affecting its soil environment.


Subject(s)
Bacteria , Droughts , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Morocco , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Plant Roots/microbiology , Biodiversity , Microbiota , DNA, Bacterial/genetics , Rhizobium/classification , Rhizobium/genetics , Rhizobium/isolation & purification , Rhizobium/physiology , Phylogeny
2.
Diseases ; 12(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785761

ABSTRACT

Hepatitis C Virus (HCV) infection represents a significant global health challenge, with its natural course largely influenced by the host's immune response. Human Leukocyte Antigen (HLA) molecules, particularly HLA class I and II, play a crucial role in the adaptive immune response against HCV. The polymorphism of HLA molecules contributes to the variability in immune response, affecting the outcomes of HCV infection. This study aims to investigate the frequency of HLA A, B, DR, and DQ alleles known to be associated with HCV clearance or persistence in a healthy Moroccan population. Conducted at the University Hospital Center Mohammed VI, Marrakech, this study spanned from 2015 to 2022 and included 703 healthy Moroccan individuals. HLA class I and II typing was performed using complement-dependent cytotoxicity and polymerase chain reaction-based methodologies. The results revealed the distinct patterns of HLA-A, B, DRB1, and DQB1 alleles in the Moroccan population. Notably, alleles linked to favorable HCV outcomes, such as HLA-DQB1*0301, DQB1*0501, and DRB1*1101, were more prevalent. Conversely, alleles associated with increased HCV susceptibility and persistence, such as HLA-DQB1*02 and DRB1*03, were also prominent. Gender-specific variations in allele frequencies were observed, providing insights into genetic influences on HCV infection outcomes. The findings align with global trends in HLA allele associations with HCV infection outcomes. The study emphasizes the role of host genetics in HCV infection, highlighting the need for further research in the Moroccan community, including HCV-infected individuals. The prevalence of certain HLA alleles, both protective and susceptibility-linked, underscores the potential for a national HLA data bank in Morocco.

3.
Front Genet ; 15: 1363849, 2024.
Article in English | MEDLINE | ID: mdl-38572415

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.

4.
Microorganisms ; 12(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38674613

ABSTRACT

Cercospora beticola Sacc. is an ascomycete pathogen that causes Cercospora leaf spot in sugar beets (Beta vulgaris L.) and other related crops. It can lead to significant yield losses if not effectively managed. This study aimed to assess rhizosphere bacteria from sugar beet soil as a biological control agent against C. beticola and evaluate their effect on B. vulgaris. Following a dual-culture screening, 18 bacteria exhibiting over 50% inhibition were selected, with 6 of them demonstrating more than 80% control. The bacteria were identified by sequencing the 16S rRNA gene, revealing 12 potential species belonging to 6 genera, including Bacillus, which was represented by 4 species. Additionally, the biochemical and molecular properties of the bacteria were characterized in depth, as well as plant growth promotion. PCR analysis of the genes responsible for producing antifungal metabolites revealed that 83%, 78%, 89%, and 56% of the selected bacteria possessed bacillomycin-, iturin-, fengycin-, and surfactin-encoding genes, respectively. Infrared spectroscopy analysis confirmed the presence of a lipopeptide structure in the bacterial supernatant filtrate. Subsequently, the bacteria were assessed for their effect on sugar beet plants in controlled conditions. The bacteria exhibited notable capabilities, promoting growth in both roots and shoots, resulting in significant increases in root length and weight and shoot length. A field experiment with four bacterial candidates demonstrated good performance against C. beticola compared to the difenoconazole fungicide. These bacteria played a significant role in disease control, achieving a maximum efficacy of 77.42%, slightly below the 88.51% efficacy attained with difenoconazole. Additional field trials are necessary to verify the protective and growth-promoting effects of these candidates, whether applied individually, combined in consortia, or integrated with chemical inputs in sugar beet crop production.

5.
Diabetes Metab Syndr ; 18(2): 102965, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38373383

ABSTRACT

BACKGROUND AND AIMS: The association of the C677T polymorphism of the Methylenetetrahydrofolate Reductase (MTHFR) gene with susceptibility to type 2 diabetes mellitus (T2DM) has been widely debated. Therefore, our aim is to conclusively resolve this controversy in the Middle East and North Africa region population through a meta-analysis. MATERIEL AND METHODS: We identified relevant articles by searching literature databases, such as PubMed, Web of Science, and Science Direct, to retrieve studies that examined the association between the MTHFR C677T polymorphism and the risk of developing T2DM. Using meta-analysis, we calculated the odds ratio (OR) and confidence interval (CI) values of these studies to assess the susceptibility to T2DM related to the C677T polymorphism of MTHFR gene. RESULTS: In this meta-analysis, we included a total of 13 publications comprising 2072 T2DM patients and 2164 control subjects. The results of the meta-analysis suggested that there is a significant association between the C677T polymorphism and T2DM risk in overall comparisons for allele contrasts (T vs C): OR = 1.25, 95% CI = 1.04-1.50, p = 0.015 and homozygous (TT vs CC): OR = 1.44, 95% CI = 1.01-2.05, p = 0.038). Subgroup analysis revealed that the C677T polymorphism is associated with a risk of T2DM in Asian populations, while there is no significant association between this polymorphism and T2DM in Caucasian and African populations. Furthermore, there was no evidence of publication bias. CONCLUSION: Our study's results suggest that the allele contrast of the C677T polymorphism of the MTHFR gene is associated with an increased risk of T2DM in the overall population, particularly among Asians.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Alleles , Risk Factors , Case-Control Studies
6.
Gene ; 887: 147791, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37696421

ABSTRACT

BACKGROUND AND AIMS: There is tremendous increase in type 2 diabetes mellitus (T2DM) worldwide. The impact of FTO gene polymorphisms on the risk of T2DM is not yet clear because of the controversial results of studies. This meta-analysis aimed to better clarify the association between three FTO gene polymorphisms SNPs (rs9939609, rs8050136 and rs17817449) and T2DM in a larger combined population worldwide. MATERIAL AND METHODS: A comprehensive search on the PubMed, Science Direct, and Web of Science databases was conducted to identify investigations in relationship between different FTO gene polymorphisms (rs9939609, rs8050136 and rs17817449) and T2DM globally. Published papers from January 2007 to May 2023 were collected. Inclusion criteria are limited to human case-control studies published in English and peer-reviewed, which provided data on the genotype distributions of FTO gene polymorphisms and T2DM risk. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to express the results of the meta-analysis. Potential sources of bias and heterogeneity using Egger's regression analysis were also assessed. RESULTS: Of 234695 identified articles, forty-eight studies were selected including 36,051 patients with T2DM and 51,266 control subjects. Overall, we found a significant increased risk of T2DM susceptibility and rs9939609 FTO gene polymorphism in the Allele contrast (A vs. T: OR = 1,30, 95% CI = 1.14; 1.48, P < 0,05, I2 = 0,94), Recessive model (AA vs. AT + TT: OR = 1,54, 95% CI = 1.19; 2.00, P < 0,05, I2 = 0,94), Dominant model (AA + AT vs. TT: OR = 1,26, 95% CI = 1.10; 1.45, P < 0,05, I2 = 0,89), homozygote model (AA vs. TT: OR = 1,60, 95% CI = 1.26; 2.03, P < 0,05, I2 = 0,90), and heterozygote model (AA vs. AT: OR = 1,43, 95% CI = 1.09; 1.88, P = 0,008, I2 = 0,93). we also found a significantly increased risk of T2DM susceptibility and rs8050136 FTO gene polymorphism under all models. For rs17817449 we did not find any association between with T2DM. CONCLUSION: The present meta-analysis confirms that rs9939609 and rs8050136 in the FTO gene are significantly associated with T2DM, while rs17817449 does not show any association.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Alleles , Genotype , Polymorphism, Single Nucleotide , Case-Control Studies , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
7.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511368

ABSTRACT

Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/ß-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Exenatide/pharmacology , MicroRNAs/genetics , MicroRNAs/therapeutic use , Hep G2 Cells , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Glucagon-Like Peptide 1/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis , Glucagon-Like Peptide-1 Receptor/genetics
8.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047308

ABSTRACT

Understanding the role of white adipose tissue (WAT) in the occurrence and progression of metabolic syndrome is of considerable interest; among the metabolic syndromes are obesity and type 2 diabetes (T2D). Insulin resistance is a key factor in the development of T2D. When the target cells become resistant to insulin, the pancreas responds by producing more insulin to try to lower blood glucose. Over time, this can lead to a state of hyperinsulinemia (high levels of insulin in the blood), which can further exacerbate insulin resistance and contribute to the development of T2D. In order to understand the difference between healthy and unhealthy obese individuals, we have used published transcriptomic profiling to compare differences between the WAT obtained from obese diabetics and subjects who are obese with normal glucose tolerance and insulin resistance. The identification of aberrantly expressed messenger RNA (mRNA) and the resulting molecular interactions and signaling networks is essential for a better understanding of the progression from normal glucose-tolerant obese individuals to obese diabetics. Computational analyses using Ingenuity Pathway Analysis (IPA) identified multiple activated signaling networks in obesity progression from insulin-resistant and normal glucose-tolerant (IR-NGT) individuals to those with T2D. The pathways affected are: Tumor Necrosis Factor (TNF), Extracellular signal-Regulated protein Kinase 1/2 ERK1/2, Interleukin 1 A (IL1A), Protein kinase C (Pkcs), Convertase C5, Vascular endothelial growth factor (Vegf), REL-associated protein (RELA), Interleukin1/1 B (IL1/1B), Triggering receptor expressed on myeloid cells (TREM1) and Nuclear factor KB1 (NFKB1) networks, while functional annotation highlighted Liver X Receptor (LXR) activation, phagosome formation, tumor microenvironment pathway, LPS/IL-1 mediated inhibition of RXR function, TREM1 signaling and IL-6 signaling. Together, by conducting a thorough bioinformatics study of protein-coding RNAs, prospective targets could be exploited to clarify the molecular pathways underlying the development of obesity-related type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/metabolism , Glucose/pharmacology , Insulin Resistance/genetics , Triggering Receptor Expressed on Myeloid Cells-1 , Vascular Endothelial Growth Factor A , Transcriptome , Obesity/metabolism , Insulin/metabolism
9.
Biomedicines ; 10(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35625757

ABSTRACT

No therapy exists for non-alcoholic fatty liver disease (NAFLD). However, glucagon-like peptide receptor agonists (GLP-1RAs) showed a beneficial effect on NAFLD, although the underpinning mechanisms remain unclear due to their pleiotropic effects. We examined the implicated signaling pathways using comparative transcriptomics in a cell model of steatosis to overcome pleiotropy. We treated steatotic HepG2 cells with the GLP-1RA Exendin-4 (Ex-4). We compared the transcriptome profiles of untreated steatotic, and Ex-4-treated steatotic cells, and used Ingenuity Pathway Analysis (IPA) to identify the signaling pathways and associated genes involved in the protective effect of Ex-4. Ex-4 treatment significantly reduces steatosis. RNA-seq analysis revealed 209 differentially expressed genes (DEGs) between steatotic and untreated cells, with farnesoid X receptor/retinoid X receptor (FXR/RXR) (p = 8.9 × 10-7) activation being the top regulated canonical pathway identified by IPA. Furthermore, 1644 DEGs were identified between steatotic cells and Ex-4-treated cells, with liver X receptor/retinoid X receptor (LXR/RXR) (p = 2.02 × 10-7) and FXR/RXR (p = 3.28 × 10-7) activation being the two top canonical pathways. The top molecular and cellular functions between untreated and steatotic cells were lipid metabolism, molecular transport, and small molecular biochemistry, while organismal injury and abnormalities, endocrine system disorders, and gastrointestinal disease were the top three molecular and cellular functions between Ex-4-treated and steatotic cells. Genes overlapping steatotic cells and Ex-4-treated cells were associated with several lipid metabolism processes. Unique transcriptomic differences exist between steatotic cells and Ex-4-treated steatotic cells, providing an important resource for understanding the mechanisms that underpin the protective effect of GLP-1RAs on NAFLD and for the identification of novel therapeutic targets for NAFLD.

10.
Sci Rep ; 12(1): 2226, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140289

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Agonists of the glucagon-like peptide-1 receptor (GLP-1R), currently approved to treat type 2 diabetes, hold promise to improve steatosis and even steatohepatitis. However, due to their pleiotropic effects, the mechanisms underlying their protective effect on NAFLD remain elusive. We aimed to investigate these mechanisms using an in vitro model of steatosis treated with the GLP-1R agonist Exendin-4 (Ex-4). We established steatotic HepG2 cells by incubating the cells with 400 µM oleic acid (OA) overnight. Further treatment with 200 nM Ex-4 for 3 h significantly reduced the OA-induced lipid accumulation (p < 0.05). Concomitantly, Ex-4 substantially reduced the expression levels of Fatty Acid-Binding Protein 1 (FABP1) and its primary activator, Forkhead box protein A1 (FOXA1). Interestingly, the silencing of ß-catenin with siRNA abolished the effect of Ex-4 on these genes, suggesting dependency on the Wnt/ß-catenin pathway. Additionally, after ß-catenin silencing, OA treatment significantly increased the expression of nuclear transcription factors SREBP-1 and TCF4, whereas Ex-4 significantly decreased this upregulation. Our findings suggest that direct activation of GLP-1R by Ex-4 reduces OA-induced steatosis in HepG2 cells by reducing fatty acid uptake and transport via FABP1 downregulation.


Subject(s)
Exenatide/pharmacology , Fatty Acid-Binding Proteins/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Protective Agents/pharmacology , Wnt Signaling Pathway/drug effects , Fatty Acid-Binding Proteins/genetics , Fatty Liver/chemically induced , Glucagon-Like Peptide-1 Receptor/agonists , Hep G2 Cells , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , In Vitro Techniques , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Models, Biological , Oleic Acid/toxicity , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factor 4/metabolism , Wnt Signaling Pathway/genetics
11.
Sci Rep ; 11(1): 24080, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916585

ABSTRACT

Elevated serum ferritin (SFer) levels are implicated in many energy metabolism abnormalities. The association between SFer levels and metabolic disorders has not been studied in Middle Eastern populations. We aimed at exploring the association between SFer levels and serum lipids, diabetes determinants, and metabolic syndrome in a sample of Qatari adults. This study used biochemical parameters obtained from 1928 participants from the Qatar Biobank cohort. We utilized adjusted multivariable logistic regression analysis to estimate the odds ratios (ORs) for dyslipidemia, type 2 diabetes, the homeostasis model assessment of insulin resistance (HOMA-IR), and metabolic syndrome (MetS) according to sex-specific SFer quartiles (Q1 to Q4). Results revealed that the ORs for dyslipidemia increased progressively and significantly across the SFer quartiles, up to two folds in Q4 for women (OR 2.47 (1.68-3.62)) and men (OR 2.24 (1.41-3.55)) versus Q1 (OR:1). Exclusively in women, the ORs for IR (HOMA-IR > 3.58) increased significantly in Q4 (OR 1.79 (1.19-2.70)) versus OR 1 in Q1 as did the ORs for diabetes (OR: 2.03 (1.15-3.57) in Q4 versus OR 1 in Q1). We observed the same result when we pooled the participants with prediabetes and diabetes in one group. The OR for MetS also increased significantly across the Sfer Quartiles from OR: 1 in Q1 to 1.92 (1.06-3.02) in Q4 for women and to 2.07 (1.08-3.98) in Q4 in men. Our results suggest the elevated Sfer levels as a potential risk biomarker for dyslipidemia and MetS in adult Qatari men and women, and diabetes and IR in women only.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Dyslipidemias/diagnosis , Ferritins/blood , Metabolic Syndrome/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Cross-Sectional Studies , Female , Humans , Insulin Resistance , Male , Middle Aged , Odds Ratio , Qatar , Risk , Sex Characteristics , Young Adult
12.
J Transl Med ; 19(1): 235, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078383

ABSTRACT

BACKGROUND AND AIMS: The hallmark of non-alcoholic fatty liver disease (NAFLD) is the excessive hepatic lipid accumulation. Currently, no pharmacotherapy exists for NAFLD. However, the glucagon-like peptide-1 receptor agonists have recently emerged as potential therapeutics. Here, we sought to identify the long non-coding RNAs (LncRNAs) associated with the steatosis improvement induced by the GLP-1R agonist Exendin-4 (Ex-4) in vitro. METHODS: Steatosis was induced in HepG2 cells with oleic acid. The transcriptomic profiling was performed using total RNA extracted from untreated, steatotic, and Ex-4-treated steatotic cells. We validated a subset of differentially expressed LncRNAs with qRT-PCR and identified the most significantly enriched cellular functions associated with the relevant LncRNAs. RESULTS: We confirm that Ex-4 improves steatosis in HepG2 cells. We found 379 and 180 differentially expressed LncRNAs between untreated and steatotic cells and between steatotic and Ex-4-treated steatotic cells, respectively. Interestingly, 22 upregulated LncRNAs in steatotic cells became downregulated with Ex-4 exposure, while 50 downregulated LncRNAs in steatotic cells became upregulated in the presence of Ex-4. Although some LncRNAs, such as MALAT1, H19, and NEAT1, were previously associated with NAFLD, the association of others with steatosis and the positive effect of Ex-4 is being reported for the first time. Functional enrichment analysis identified many critical pathways, including fatty acid and pyruvate metabolism, and insulin, PPAR, Wnt, TGF-ß, mTOR, VEGF, NOD-like, and Toll-like receptors signaling pathways. CONCLUSION: Our results suggest that LncRNAs may play essential roles in the mechanisms underlying steatosis improvement in response to GLP-1R agonists and warrant further functional studies.


Subject(s)
Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Exenatide/pharmacology , Hep G2 Cells , Humans , Liver , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/genetics
13.
J Diabetes Investig ; 12(6): 988-997, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33075216

ABSTRACT

AIMS/INTRODUCTION: The progression from prediabetes to type 2 diabetes is preventable by lifestyle intervention and/or pharmacotherapy in a large fraction of individuals with prediabetes. Our objective was to develop a risk score to screen for prediabetes in the Middle East, where diabetes prevalence is one of the highest in the world. MATERIALS AND METHODS: In this cross-sectional, case-control study, we used data of 4,895 controls and 2,373 prediabetic adults obtained from the Qatar Biobank cohort. Significant risk factors were identified by logistic regression and other machine learning methods. The receiver operating characteristic was used to calculate the area under curve, cut-off point, sensitivity, specificity, positive and negative predictive values. The prediabetes risk score was developed from data of Qatari citizens, as well as long-term (≥15 years) residents. RESULTS: The significant risk factors for the Prediabetes Risk Score in Qatar were age, sex, body mass index, waist circumference and blood pressure. The risk score ranges from 0 to 45. The area under the curve of the score was 80% (95% confidence interval 78-83%), and the cut-off point of 16 yielded sensitivity and specificity of 86.2% (95% confidence interval 82.7-89.2%) and 57.9% (95% confidence interval 65.5-71.4%), respectively. Prediabetes Risk Score in Qatar performed equally in Qatari nationals and long-term residents. CONCLUSIONS: Prediabetes Risk Score in Qatar is the first prediabetes screening score developed in a Middle Eastern population. It only uses risk factors measured non-invasively, is simple, cost-effective, and can be easily understood by the general public and health providers. Prediabetes Risk Score in Qatar is an important tool for early detection of prediabetes, and can help tremendously in curbing the diabetes epidemic in the region.


Subject(s)
Biological Specimen Banks/statistics & numerical data , Mass Screening/methods , Prediabetic State/diagnosis , Risk Assessment/methods , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Blood Pressure , Body Mass Index , Case-Control Studies , Cross-Sectional Studies , Diabetes Mellitus, Type 2/prevention & control , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Qatar , Reference Values , Risk Factors , Sensitivity and Specificity , Waist Circumference , Young Adult
14.
Sci Rep ; 10(1): 21950, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33319795

ABSTRACT

Although many factors have been identified and used to enhance the iPSC reprogramming process, its efficiency remains quite low. In addition, reprogramming efficacy has been evidenced to be affected by disease mutations that are present in patient samples. In this study, using RNA-seq platform we have identified and validated the differential gene expression of five transcription factors (TFs) (GBX2, NANOGP8, SP8, PEG3, and ZIC1) that were associated with a remarkable increase in the number of iPSC colonies generated from a patient with Parkinson's disease. We have applied different bioinformatics tools (Gene ontology, protein-protein interaction, and signaling pathways analyses) to investigate the possible roles of these TFs in pluripotency and developmental process. Interestingly, GBX2, NANOGP8, SP8, PEG3, and ZIC1 were found to play a role in maintaining pluripotency, regulating self-renewal stages, and interacting with other factors that are involved in pluripotency regulation including OCT4, SOX2, NANOG, and KLF4. Therefore, the TFs identified in this study could be used as additional transcription factors that enhance reprogramming efficiency to boost iPSC generation technology.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cellular Reprogramming , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Parkinson Disease/metabolism , Parkinson Disease/pathology
15.
Dis Markers ; 2020: 8822859, 2020.
Article in English | MEDLINE | ID: mdl-33133304

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide in part due to the concomitant obesity pandemic and insulin resistance (IR). It is increasingly becoming evident that NAFLD is a disease affecting numerous extrahepatic vital organs and regulatory pathways. The molecular mechanisms underlying the nonalcoholic steatosis formation are poorly understood, and little information is available on the pathways that are responsible for the progressive hepatocellular damage that follows lipid accumulation. Recently, much research has focused on the identification of the epigenetic modifications that contribute to NAFLD pathogenesis. Noncoding RNAs (ncRNAs) are one of such epigenetic factors that could be implicated in the NAFLD development and progression. In this review, we summarize the current knowledge of the genetic and epigenetic factors potentially underlying the disease. Particular emphasis will be put on the contribution of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) to the pathophysiology of NAFLD as well as their potential use as therapeutic targets or as markers for the prediction and the progression of the disease.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , RNA, Untranslated/genetics , Biomarkers , Epigenesis, Genetic , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/physiopathology , Prognosis , RNA, Untranslated/blood
16.
Orphanet J Rare Dis ; 9: 80, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24907849

ABSTRACT

BACKGROUND: A consanguineous Arab family is affected by an apparently novel autosomal recessive disorder characterized by cognitive impairment, failure-to-thrive, hypotonia and dysmorphic features including bilateral ptosis and epicanthic folds, synophrys, midface hypoplasia, downturned mouth corners, thin upper vermillion border and prominent ears, bilateral 5th finger camptodactyly, bilateral short 4th metatarsal bones, and limited knee mobility bilaterally. METHODS: The family was studied by homozygosity mapping, candidate gene mutation screening and whole Exome Next Generation Sequencing of a single affected member to identify the offending gene and mutation. The mutated gene product was studied by structural bioinformatics methods. RESULTS: A damaging c.C5054G mutation affecting an evolutionary highly conserved amino acid p.S1685W was identified in the ZNF407 gene at 18q23. The Serine to Tryptophane mutation affects two of the three ZNF407 isoforms and is located in the last third of the protein, in a linker peptide adjoining two zinc-finger domains. Structural analyses of this mutation shows disruption of an H-bond that locks the relative spatial position of the two fingers, leading to a higher flexibility of the linker and thus to a decreased probability of binding to the target DNA sequence essentially eliminating the functionality of downstream domains and interfering with the expression of various genes under ZNF407 control during fetal brain development. CONCLUSIONS: ZNF407 is a transcription factor with an essential role in brain development. When specific and limited in number homozygosity intervals exist that harbor the offending gene in consanguineous families, Whole Exome Sequencing of a single affected individual is an efficient approach to gene mapping and mutation identification.


Subject(s)
Cognition Disorders/genetics , Genes, Recessive , Mutation , Zinc Fingers/genetics , Abnormalities, Multiple/genetics , Amino Acid Sequence , Child , Humans , Male , Molecular Sequence Data , Pedigree , Sequence Homology, Amino Acid , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...