Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Chem Phys ; 159(23)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38108481

ABSTRACT

The performance of Hamiltonian Monte Carlo simulations crucially depends on both the integration timestep and the number of integration steps. We present an adaptive general-purpose framework to automatically tune such parameters based on a local loss function that promotes the fast exploration of phase space. We show that a good correspondence between loss and autocorrelation time can be established, allowing for gradient-based optimization using a fully differentiable set-up. The loss is constructed in such a way that it also allows for gradient-driven learning of a distribution over the number of integration steps. Our approach is demonstrated for the one-dimensional harmonic oscillator and alanine dipeptide, a small protein commonly used as a test case for simulation methods. Through the application to the harmonic oscillator, we highlight the importance of not using a fixed timestep to avoid a rugged loss surface with many local minima, otherwise trapping the optimization. In the case of alanine dipeptide, by tuning the only free parameter of our loss definition, we find a good correspondence between it and the autocorrelation times, resulting in a >100 fold speedup in the optimization of simulation parameters compared to a grid search. For this system, we also extend the integrator to allow for atom-dependent timesteps, providing a further reduction of 25% in autocorrelation times.

2.
Front Artif Intell ; 5: 824655, 2022.
Article in English | MEDLINE | ID: mdl-35187476

ABSTRACT

In this work, we study the phenomenon of catastrophic forgetting in the graph representation learning scenario. The primary objective of the analysis is to understand whether classical continual learning techniques for flat and sequential data have a tangible impact on performances when applied to graph data. To do so, we experiment with a structure-agnostic model and a deep graph network in a robust and controlled environment on three different datasets. The benchmark is complemented by an investigation on the effect of structure-preserving regularization techniques on catastrophic forgetting. We find that replay is the most effective strategy in so far, which also benefits the most from the use of regularization. Our findings suggest interesting future research at the intersection of the continual and graph representation learning fields. Finally, we provide researchers with a flexible software framework to reproduce our results and carry out further experiments.

3.
Front Mol Biosci ; 8: 637396, 2021.
Article in English | MEDLINE | ID: mdl-33996896

ABSTRACT

The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed forward by the relentless development of computer architectures and algorithms. The consequent explosion in the number and extent of MD trajectories induces the need for automated methods to rationalize the raw data and make quantitative sense of them. Recently, an algorithmic approach was introduced by some of us to identify the subset of a protein's atoms, or mapping, that enables the most informative description of the system. This method relies on the computation, for a given reduced representation, of the associated mapping entropy, that is, a measure of the information loss due to such simplification; albeit relatively straightforward, this calculation can be time-consuming. Here, we describe the implementation of a deep learning approach aimed at accelerating the calculation of the mapping entropy. We rely on Deep Graph Networks, which provide extreme flexibility in handling structured input data and whose predictions prove to be accurate and-remarkably efficient. The trained network produces a speedup factor as large as 105 with respect to the algorithmic computation of the mapping entropy, enabling the reconstruction of its landscape by means of the Wang-Landau sampling scheme. Applications of this method reach much further than this, as the proposed pipeline is easily transferable to the computation of arbitrary properties of a molecular structure.

4.
Neural Netw ; 129: 203-221, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559609

ABSTRACT

The adaptive processing of graph data is a long-standing research topic that has been lately consolidated as a theme of major interest in the deep learning community. The snap increase in the amount and breadth of related research has come at the price of little systematization of knowledge and attention to earlier literature. This work is a tutorial introduction to the field of deep learning for graphs. It favors a consistent and progressive presentation of the main concepts and architectural aspects over an exposition of the most recent literature, for which the reader is referred to available surveys. The paper takes a top-down view of the problem, introducing a generalized formulation of graph representation learning based on a local and iterative approach to structured information processing. Moreover, it introduces the basic building blocks that can be combined to design novel and effective neural models for graphs. We complement the methodological exposition with a discussion of interesting research challenges and applications in the field.


Subject(s)
Deep Learning , Knowledge Bases
SELECTION OF CITATIONS
SEARCH DETAIL
...