Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(6): 418, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879508

ABSTRACT

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca2+ or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca2+ levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.


Subject(s)
Breast Neoplasms , Calcium , Cyclic AMP , Drug Resistance, Neoplasm , Ferroptosis , RNA, Long Noncoding , Tamoxifen , Humans , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/genetics , Female , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Cyclic AMP/metabolism , Calcium/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Animals , Receptors, Estrogen/metabolism , Mice , Reactive Oxygen Species/metabolism , MCF-7 Cells
2.
Nat Commun ; 14(1): 6997, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37914699

ABSTRACT

Resistance to endocrine therapy and CDK4/6 inhibitors, the standard of care (SOC) in estrogen receptor-positive (ER+) breast cancer, greatly reduces patient survival. Therefore, elucidating the mechanisms of sensitivity and resistance to SOC therapy and identifying actionable targets are urgently needed. Here, we show that SOC therapy causes DNA damage and toxic PARP1 trapping upon generation of a functional BRCAness (i.e., BRCA1/2 deficiency) phenotype, leading to increased histone parylation and reduced H3K9 acetylation, resulting in transcriptional blockage and cell death. Mechanistically, SOC therapy downregulates phosphodiesterase 4D (PDE4D), a novel ER target gene in a feedforward loop with ER, resulting in increased cAMP, PKA-dependent phosphorylation of mitochondrial COXIV-I, ROS generation and DNA damage. However, during SOC resistance, an ER-to-EGFR switch induces PDE4D overexpression via c-Jun. Notably, combining SOC with inhibitors of PDE4D, EGFR or PARP1 overcomes SOC resistance irrespective of the BRCA1/2 status, providing actionable targets for restoring SOC efficacy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA1 Protein/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Receptors, Estrogen/metabolism , BRCA2 Protein/genetics , DNA Damage , ErbB Receptors/genetics , Cyclin-Dependent Kinase 4
3.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-38496603

ABSTRACT

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER+) breast cancer, constituting around 75% of all cases. However, emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance via blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of cAMP/PKA/CREB axis and increased expression of TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels. These ultimately induce lipid peroxidation and ferroptotic cell death in combination with tamoxifen. Overexpressing PDE4D rescues LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of ferroptosis induction and tamoxifen sensitization, thereby revealing LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.

4.
Breast Cancer Res Treat ; 193(2): 331-348, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338412

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that is frequently treated with chemotherapy. However, many patients exhibit either de novo chemoresistance or ultimately develop resistance to chemotherapy, leading to significantly high mortality rates. Therefore, increasing the efficacy of chemotherapy has potential to improve patient outcomes. METHODS: Here, we performed whole transcriptome sequencing (both RNA and small RNA-sequencing), coupled with network simulations and patient survival data analyses to build a novel miRNA-mRNA interaction network governing chemoresistance in TNBC. We performed cell proliferation assay, Western blotting, RNAi/miRNA mimic experiments, FN coating, 3D cultures, and ChIP assays to validate the interactions in the network, and their functional roles in chemoresistance. We developed xenograft models to test the therapeutic potential of the identified key miRNA/proteins in potentiating chemoresponse in vivo. We also analyzed several patient datasets to evaluate the clinical relevance of our findings. RESULTS: We identified fibronectin (FN1) as a central chemoresistance driver gene. Overexpressing miR-326 reversed FN1-driven chemoresistance by targeting FN1 receptor, ITGA5. miR-326 was downregulated by increased hypoxia/HIF1A and ECM stiffness in chemoresistant tumors, leading to upregulation of ITGA5 and activation of the downstream FAK/Src signaling pathways. Overexpression of miR-326 or inhibition of ITGA5 overcame FN1-driven chemotherapy resistance in vitro by inhibiting FAK/Src pathway and potentiated the efficacy of chemotherapy in vivo. Importantly, lower expression of miR-326 or higher levels of predicted miR-326 target genes was significantly associated with worse overall survival in chemotherapy-treated TNBC patients. CONCLUSION: FN1 is central in chemoresistance. In chemoresistant tumors, hypoxia and resulting ECM stiffness repress the expression of the tumor suppressor miRNA, miR-326. Hence, re-expression of miR-326 or inhibition of its target ITGA5 reverses FN1-driven chemoresistance making them attractive therapeutic approaches to enhance chemotherapy response in TNBCs.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Integrins , MicroRNAs , Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Integrins/genetics , MicroRNAs/genetics , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
5.
Immunol Lett ; 239: 32-41, 2021 11.
Article in English | MEDLINE | ID: mdl-34418488

ABSTRACT

Tumor-derived exosomes (TEXs) could be harnessed as an immunotherapeutic cancer vaccine. These nanovesicles are inherently possesses rich tumor antigen reservoirs. Due to their undesirable features such as poor or limited immunogenicity as well as facilitation of cancer development via mediating communication between tumor cells TEXs could be transformed into an effective immune adjuvant delivery system that initiates a strong humoral and cell-mediated tumor-specific immune response. Engineering TEXs to harbor immunostimulatory molecules still remains a challenge. Previously, we demonstrated that nucleic acid ligand encapsulated liposomes could trigger synergistic strong humoral, and cell mediated immune responses and provokes tumor regression to that of their standalone counterparts. In this study, we evaluated to immunogenicity of 4T1/Her2 cell-derived exosomes upon loading them with two potent immuno adjuvant, a TLR9 ligand, K-type CpG ODN and a TLR3 ligand, p(I:C). Engineered TEXs co-encapsulating both ligands displayed boosted immunostimulatory properties by activating antigen-specific primary and memory T cell responses. Furthermore, our exosome-based vaccine candidate elicited robust Th1-biased immunity as evidenced by elevated secretion of IgG2a and IFNγ. In a therapeutic cancer model, administration of4T1 tumor derived exosomes loaded with CpG ODN and p(I:C) to animals regress tumor growth in 4T1 tumor-bearing mice. Taken together this work implicated that an exosome-based therapeutic vaccine promoted strong cellular and humoral anti-tumor immunity that is sufficient to reverse established tumors. This approach offers a personalized tumor therapy strategy that could be implemented in the clinic.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Neoplasm/administration & dosage , Breast Neoplasms/therapy , Cancer Vaccines/administration & dosage , Exosomes/immunology , Animals , Antigens, Neoplasm/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cancer Vaccines/immunology , Cell Line, Tumor/transplantation , Disease Models, Animal , Female , Humans , Memory T Cells/immunology , Mice , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Poly I-C/administration & dosage , Poly I-C/immunology , Th1 Cells/immunology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/metabolism
6.
Mol Cell Proteomics ; 18(9): 1756-1771, 2019 09.
Article in English | MEDLINE | ID: mdl-31221721

ABSTRACT

Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.


Subject(s)
Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/physiology , HSP40 Heat-Shock Proteins/metabolism , Phosphoproteins/metabolism , Tetraspanin 28/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Line, Tumor , Cell Movement/physiology , Epithelial-Mesenchymal Transition/genetics , Female , HSP40 Heat-Shock Proteins/genetics , Humans , Kaplan-Meier Estimate , Mammary Neoplasms, Experimental/pathology , Mice, Nude , Reproducibility of Results , Tetraspanin 28/genetics
7.
Oncotarget ; 7(31): 49859-49877, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27409664

ABSTRACT

Tumor cells develop drug resistance which leads to recurrence and distant metastasis. MicroRNAs are key regulators of tumor pathogenesis; however, little is known whether they can sensitize cells and block metastasis simultaneously. Here, we report miR-644a as a novel inhibitor of both cell survival and EMT whereby acting as pleiotropic therapy-sensitizer in breast cancer. We showed that both miR-644a expression and its gene signature are associated with tumor progression and distant metastasis-free survival. Mechanistically, miR-644a directly targets the transcriptional co-repressor C-Terminal Binding Protein 1 (CTBP1) whose knock-outs by the CRISPR-Cas9 system inhibit tumor growth, metastasis, and drug resistance, mimicking the phenotypes induced by miR-644a. Furthermore, downregulation of CTBP1 by miR-644a upregulates wild type- or mutant-p53 which acts as a 'molecular switch' between G1-arrest and apoptosis by inducing cyclin-dependent kinase inhibitor 1 (p21, CDKN1A, CIP1) or pro-apoptotic phorbol-12-myristate-13-acetate-induced protein 1 (Noxa, PMAIP1), respectively. Interestingly, an increase in mutant-p53 by either overexpression of miR-644a or downregulation of CTBP1 was enough to shift this balance in favor of apoptosis through upregulation of Noxa. Notably, p53-mutant patients, but not p53-wild type ones, with high CTBP1 have a shorter survival suggesting that CTBP1 could be a potential prognostic factor for breast cancer patients with p53 mutations. Overall, re-activation of the miR-644a/CTBP1/p53 axis may represent a new strategy for overcoming both therapy resistance and metastasis.


Subject(s)
Alcohol Oxidoreductases/metabolism , Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Alcohol Oxidoreductases/genetics , Animals , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Survival , DNA-Binding Proteins/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Mice, Nude , Mutation , Neoplasm Metastasis , Neoplasm Recurrence, Local/genetics , Neoplasm Transplantation , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...