Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 25(5): 1106-1111, 2019 10.
Article in English | MEDLINE | ID: mdl-31307569

ABSTRACT

Atomic force microscopy (AFM) is typically used for analysis of relatively flat surfaces with topographic features smaller than the height of the AFM tip. On flat surfaces, it is relatively easy to find the object of interest and deconvolute imaging artifacts resulting from the finite size of the AFM tip. In contrast, AFM imaging of three-dimensional objects much larger than the AFM tip height is rarely attempted although it could provide topographic information that is not readily available from two-dimensional imaging, such as scanning electron microscopy. In this paper, we report AFM measurements of a vertically-mounted razor blade, which is taller and sharper than the AFM tip. In this case, the AFM height data, except for the data collected around the cutting edge of the blade, reflect the shape of the AFM tip. The height data around the apex area are effectively the convolution of the AFM tip and the blade cutting edge. Based on computer simulations mimicking an AFM tip scanning across a round sample, a simple algorithm is proposed to deconvolute the AFM height data of an object taller and sharper than the AFM tip and estimate its effective curvature.

2.
J Opt Soc Am A Opt Image Sci Vis ; 32(5): 764-70, 2015 May 01.
Article in English | MEDLINE | ID: mdl-26366898

ABSTRACT

A 20-period-thick chiral sculptured thin film (STF) of zinc selenide was fabricated on a glass slide by thermal evaporation. A variable-angle spectroscopic system was devised and used to measure all eight of the circular remittances of the chiral STF as functions of the angle of incidence and the free-space wavelength. Thereby, the center wavelength and the bandwidth of the circular Bragg phenomenon exhibited by structurally chiral materials such as cholesteric liquid crystals and chiral STFs were comprehensively characterized for incidence angles in the range [0°,70°]. The experimental data were qualitatively compared with data calculated using a helicoidal model for the relative permittivity dyadic of the chiral STF, and assuming that all three eigenvalues of that dyadic obey the single-resonance Lorentz model. The chosen representation was found adequate to represent the blue shift of the centerwavelength with an increasing angle of incidence, but the Lorentz model requires modification to develop improved predictive capabilities.

3.
Ann Bot ; 112(6): 1141-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23960046

ABSTRACT

BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration. METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance. KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.


Subject(s)
Cellulose/metabolism , Cyperaceae/chemistry , Silicon Dioxide/chemistry , Cell Wall/chemistry , Cell Wall/metabolism , Color , Cyperaceae/metabolism , Cyperaceae/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Optics and Photonics , Plant Epidermis/chemistry , Plant Epidermis/metabolism , Plant Epidermis/ultrastructure , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/ultrastructure
4.
ACS Nano ; 7(6): 4995-5007, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23730702

ABSTRACT

Light incident upon a periodically corrugated metal/dielectric interface can generate surface plasmon polariton (SPP) waves. This effect is used in many sensing applications. Similar metallodielectric nanostructures are used for light trapping in solar cells, but the gains are modest because SPP waves can be excited only at specific angles and with one linear polarization state of incident light. Here we report the optical absorptance of a metallic grating coupled to silicon oxide/oxynitride layers with a periodically varying refractive index, i.e., a 1D photonic crystal. These structures show a dramatic enhancement relative to those employing a homogeneous dielectric material. Multiple SPP waves can be activated, and both s- and p-polarized incident light can be efficiently trapped. Many SPP modes are weakly bound and display field enhancements that extend throughout the dielectric layers. These modes have significantly longer propagation lengths than the single SPP modes excited at the interface of a metallic grating and a uniform dielectric. These results suggest that metallic gratings coupled to photonic crystals could have utility for light trapping in photovoltaics, sensing, and other applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...