Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37759993

ABSTRACT

Bee pollen (BP) and bee bread (BB) are natural food sources containing a wide variety of bioactive compounds, complementing their rich nutritional composition. These bee products are being explored to empower functional foods, with the term functionality being dependent on the bioactive compounds added to the food matrix. However, there is not enough evidence of the effect of heat on these compounds during food processing and production and how it impacts their biological activity. Here, we enriched traditional bread by adding BP and BB at different proportions of 1 to 5% and tested the thermal stability of their bioactive compounds through several spectroscopic and chromatographic analyses. Adding bee pollen and bee bread to bread resulted in a 4 and 5-fold increase in total phenolic content, respectively. While not all the 38 phenolic and phenolamide compounds identified in the raw BP and BB were detected in the processed bread, phenolamides were found to be more resilient to baking and heat treatment than flavonoids. Still, the enriched bread's antioxidant activity improved with the addition of BP and BB. Therefore, incorporating bee products into heat-treated products could enhance the functionality of staple foods and increase the accessibility to these natural products.

2.
Int J Biol Macromol ; 155: 508-515, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32240738

ABSTRACT

In the literature, the produced ß-chitin samples are in powder or flake forms but there is no natural ß-chitin based film. Also, the commercially available transdermal patches are produced from synthetic polymers. In this regard, we produced natural ß-chitin-protein complex (CPC) film from the waste shells of Ensis spp. The obtained natural film was characterized by FTIR, TGA and SEM. Additionally, swelling, thickness, contact angle and antioxidant tests were done to learn more about the films. After production and characterization of the film, capsaicin, which is commonly used for pain relief was loaded into the film. The loading capacity was recorded as 5.79%. The kinetic models were studied in three different pH, then the results were fitted with Higuchi model with high correlation at pH 7.4. After considering all the obtained results, the capsaicin loaded CPC film may be an alternative candidate for transdermal patch instead of the synthetic ones.


Subject(s)
Animal Shells/chemistry , Capsaicin/metabolism , Chitin/chemistry , Skin/metabolism , Transdermal Patch , Animals , Bivalvia , Capsaicin/chemistry , Chitin/metabolism , Polymers/chemistry
3.
Int J Biol Macromol ; 105(Pt 1): 749-756, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28716746

ABSTRACT

Sporopollenin is a promising material for drug encapsulation due to its excellent properties; uniformity in size, non-toxicity, chemically and thermally resilient nature. Herein, morphologically intact sporopollenin microcapsules were extracted from Betula pendula pollens. Cancer therapeutic agent (imatinib mesylate) was loaded into the microcapsules. The encapsulation efficiency by passive loading technique was found to be 21.46%. Release behaviour of the drug from microcapsules was found to be biphasic, with an initial fast release followed by a slower rate of release. Imatinib mesylate release from the drug itself (control) was faster than from imatinib mesylate-loaded sporopollenin microcapsules. The release profiles for both free and entrapped drug samples were significantly slower and more controlled in PBS buffer (pH 7.4) than in HCl (pH 1.2) buffer. Cumulative drug release from IM-MES-loaded sporopollenin microcapsules was found to be 65% within 24h for PBS, whereas release from the control was completed within 1h. Also, a complete dissolution of control in HCl buffer was observed within first 30min. MTT assay revealed that drug-loaded microcapsules were effective on WiDr human colon carcinoma cell line. B. pendula sporopollenin can be suggested as an effective carrier for oral delivery of imatinib mesylate.


Subject(s)
Betula/chemistry , Biopolymers/chemistry , Carotenoids/chemistry , Drug Carriers/chemistry , Imatinib Mesylate/chemistry , Imatinib Mesylate/pharmacology , Pollen/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biopolymers/isolation & purification , Capsules , Carotenoids/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Delayed-Action Preparations , Drug Liberation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...