Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
2.
Article in English | MEDLINE | ID: mdl-38656243

ABSTRACT

It is not well understood how neighborhood disadvantage is associated with specific domains of cognitive function and underlying brain health within older adults. Thus, the objective was to examine associations between neighborhood disadvantage, brain health, and cognitive performance, and examine whether associations were more pronounced among women. The study included 136 older adults who underwent cognitive testing and MRI. Neighborhood disadvantage was characterized using the Area Deprivation Index (ADI). Descriptive statistics, bivariate correlations, and multiple regressions were run. Multiple regressions, adjusted for age, sex, education, and depression, showed that higher ADI state rankings (greater disadvantage) were associated with poorer working memory performance (p < .01) and lower hippocampal volumes (p < .01), but not total, frontal, and white matter lesion volumes, nor visual and verbal memory performance. There were no significant sex interactions. Findings suggest that greater neighborhood disadvantage may play a role in working memory and underlying brain structure.

3.
Alzheimers Res Ther ; 16(1): 94, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689358

ABSTRACT

BACKGROUND: Although blood-based biomarkers have been identified as cost-effective and scalable alternatives to PET and CSF markers of neurodegenerative disease, little is known about how these biomarkers predict future brain atrophy and cognitive decline in cognitively unimpaired individuals. Using data from the Baltimore Longitudinal Study of Aging (BLSA), we examined whether plasma biomarkers of Alzheimer's disease (AD) pathology (amyloid-ß [Aß42/40], phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal brain volume loss and cognitive decline. Additionally, we determined whether sex, APOEε4 status, and plasma amyloid-ß status modified these associations. METHODS: Plasma biomarkers were measured using Quanterix SIMOA assays. Regional brain volumes were measured by 3T MRI, and a battery of neuropsychological tests assessed five cognitive domains. Linear mixed effects models adjusted for demographic factors, kidney function, and intracranial volume (MRI analyses) were completed to relate baseline plasma biomarkers to baseline and longitudinal brain volume and cognitive performance. RESULTS: Brain volume analyses included 622 participants (mean age ± SD: 70.9 ± 10.2) with an average of 3.3 MRI scans over 4.7 years. Cognitive performance analyses included 674 participants (mean age ± SD: 71.2 ± 10.0) with an average of 3.9 cognitive assessments over 5.7 years. Higher baseline pTau-181 was associated with steeper declines in total gray matter volume and steeper regional declines in several medial temporal regions, whereas higher baseline GFAP was associated with greater longitudinal increases in ventricular volume. Baseline Aß42/40 and NfL levels were not associated with changes in brain volume. Lower baseline Aß42/40 (higher Aß burden) was associated with a faster decline in verbal memory and visuospatial performance, whereas higher baseline GFAP was associated with a faster decline in verbal fluency. Results were generally consistent across sex and APOEε4 status. However, the associations of higher pTau-181 with increasing ventricular volume and memory declines were significantly stronger among individuals with higher Aß burden, as was the association of higher GFAP with memory decline. CONCLUSIONS: Among cognitively unimpaired older adults, plasma biomarkers of AD pathology (pTau-181) and astrogliosis (GFAP), but not neuronal injury (NfL), serve as markers of future brain atrophy and cognitive decline.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Atrophy , Biomarkers , Brain , Cognitive Dysfunction , tau Proteins , Humans , Female , Male , Biomarkers/blood , Aged , Atrophy/pathology , Brain/pathology , Brain/diagnostic imaging , Alzheimer Disease/blood , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/pathology , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Longitudinal Studies , Glial Fibrillary Acidic Protein/blood , Middle Aged , Aged, 80 and over , Neurofilament Proteins/blood , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Neuropsychological Tests , Magnetic Resonance Imaging , Peptide Fragments/blood
4.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521789

ABSTRACT

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Subject(s)
Diabetes Mellitus, Type 2 , White Matter , Humans , Brain , Gray Matter , Magnetic Resonance Imaging/methods , White Matter/physiology , Mendelian Randomization Analysis
5.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353984

ABSTRACT

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Subject(s)
Aging , Brain , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Aging/genetics , Aging/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Cohort Studies , Deep Learning
6.
Nat Commun ; 15(1): 354, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191573

ABSTRACT

Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.


Subject(s)
Alzheimer Disease , Neuroimaging , Humans , Endophenotypes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Cluster Analysis
7.
Alzheimers Dement ; 20(2): 1397-1405, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009395

ABSTRACT

INTRODUCTION: Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS: In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS: In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION: HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , White Matter , Humans , Aged , Heart Rate , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Stroke/pathology , White Matter/diagnostic imaging , White Matter/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology
8.
Ann Clin Transl Neurol ; 11(2): 263-277, 2024 02.
Article in English | MEDLINE | ID: mdl-38155462

ABSTRACT

OBJECTIVE: Although acute brain infarcts are common after surgical aortic valve replacement (SAVR), they are often unassociated with clinical stroke symptoms. The relationship between clinically "silent" infarcts and in-hospital delirium remains uncertain; obscured, in part, by how infarcts have been traditionally summarized as global metrics, independent of location or structural consequence. We sought to determine if infarct location and related structural connectivity changes were associated with postoperative delirium after SAVR. METHODS: A secondary analysis of a randomized multicenter SAVR trial of embolic protection devices (NCT02389894) was conducted, excluding participants with clinical stroke or incomplete neuroimaging (N = 298; 39% female, 7% non-White, 74 ± 7 years). Delirium during in-hospital recovery was serially screened using the Confusion Assessment Method. Parcellation and tractography atlas-based neuroimaging methods were used to determine infarct locations and cortical connectivity effects. Mixed-effect, zero-inflated gaussian modeling analyses, accounting for brain region-specific infarct characteristics, were conducted to examine for differences within and between groups by delirium status and perioperative neuroprotection device strategy. RESULTS: 23.5% participants experienced postoperative delirium. Delirium was associated with significantly increased lesion volumes in the right cerebellum and temporal lobe white matter, while diffusion weighted imaging infarct-related structural disconnection (DWI-ISD) was observed in frontal and temporal lobe regions (p-FDR < 0.05). Fewer brain regions demonstrated DWI-ISD loss in the suction-based neuroprotection device group, relative to filtration-based device or standard aortic cannula. INTERPRETATION: Structural disconnection from acute infarcts was greater in patients who experienced postoperative delirium, suggesting that the impact from covert perioperative infarcts may not be as clinically "silent" as commonly assumed.


Subject(s)
Delirium , Emergence Delirium , Heart Valve Prosthesis Implantation , Stroke , Humans , Female , Male , Aortic Valve/surgery , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/methods , Risk Factors , Delirium/etiology , Infarction/surgery
9.
medRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077091

ABSTRACT

Background: Ambient air pollution exposures increase risk for Alzheimer's disease (AD) and related dementias, possibly due to structural changes in the medial temporal lobe (MTL). However, existing MRI studies examining exposure effects on the MTL were cross-sectional and focused on the hippocampus, yielding mixed results. Method: To determine whether air pollution exposures were associated with MTL atrophy over time, we conducted a longitudinal study including 653 cognitively unimpaired community-dwelling older women from the Women's Health Initiative Memory Study with two MRI brain scans (MRI-1: 2005-6; MRI-2: 2009-10; Mage at MRI-1=77.3±3.5years). Using regionalized universal kriging models, exposures at residential locations were estimated as 3-year annual averages of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) prior to MRI-1. Bilateral gray matter volumes of the hippocampus, amygdala, parahippocampal gyrus (PHG), and entorhinal cortex (ERC) were summed to operationalize the MTL. We used linear regressions to estimate exposure effects on 5-year volume changes in the MTL and its subregions, adjusting for intracranial volume, sociodemographic, lifestyle, and clinical characteristics. Results: On average, MTL volume decreased by 0.53±1.00cm3 over 5 years. For each interquartile increase of PM2.5 (3.26µg/m3) and NO2 (6.77ppb), adjusted MTL volume had greater shrinkage by 0.32cm3 (95%CI=[-0.43, -0.21]) and 0.12cm3 (95%CI=[-0.22, -0.01]), respectively. The exposure effects did not differ by APOE ε4 genotype, sociodemographic, and cardiovascular risk factors, and remained among women with low-level PM2.5 exposure. Greater PHG atrophy was associated with higher PM2.5 (b=-0.24, 95%CI=[-0.29, -0.19]) and NO2 exposures (b=-0.09, 95%CI=[-0.14, -0.04]). Higher exposure to PM2.5 but not NO2 was also associated with greater ERC atrophy. Exposures were not associated with amygdala or hippocampal atrophy. Conclusion: In summary, higher late-life PM2.5 and NO2 exposures were associated with greater MTL atrophy over time in cognitively unimpaired older women. The PHG and ERC - the MTL cortical subregions where AD neuropathologies likely begin, may be preferentially vulnerable to air pollution neurotoxicity.

10.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127979

ABSTRACT

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods , Genomics , Brain Neoplasms/pathology
11.
Stroke ; 54(11): 2853-2863, 2023 11.
Article in English | MEDLINE | ID: mdl-37814955

ABSTRACT

BACKGROUND: Proteins expressed by brain endothelial cells (BECs), the primary cell type of the blood-brain barrier, may serve as sensitive plasma biomarkers for neurological and neurovascular conditions, including cerebral small vessel disease. METHODS: Using data from the BLSA (Baltimore Longitudinal Study of Aging; n=886; 2009-2020), BEC-enriched proteins were identified among 7268 plasma proteins (measured with SomaScanv4.1) using an automated annotation algorithm that filtered endothelial cell transcripts followed by cross-referencing with BEC-specific transcripts reported in single-cell RNA-sequencing studies. To identify BEC-enriched proteins in plasma most relevant to the maintenance of neurological and neurovascular health, we selected proteins significantly associated with 3T magnetic resonance imaging-defined white matter lesion volumes. We then examined how these candidate BEC biomarkers related to white matter lesion volumes, cerebral microhemorrhages, and lacunar infarcts in the ARIC study (Atherosclerosis Risk in Communities; US multisite; 1990-2017). Finally, we determined whether these candidate BEC biomarkers, when measured during midlife, were related to dementia risk over a 25-year follow-up period. RESULTS: Of the 28 proteins identified as BEC-enriched, 4 were significantly associated with white matter lesion volumes (CDH5 [cadherin 5], CD93 [cluster of differentiation 93], ICAM2 [intracellular adhesion molecule 2], GP1BB [glycoprotein 1b platelet subunit beta]), while another approached significance (RSPO3 [R-Spondin 3]). A composite score based on 3 of these BEC proteins accounted for 11% of variation in white matter lesion volumes in BLSA participants. We replicated the associations between the BEC composite score, CDH5, and RSPO3 with white matter lesion volumes in ARIC, and further demonstrated that the BEC composite score and RSPO3 were associated with the presence of ≥1 cerebral microhemorrhages. We also showed that the BEC composite score, CDH5, and RSPO3 were associated with 25-year dementia risk. CONCLUSIONS: In addition to identifying BEC proteins in plasma that relate to cerebral small vessel disease and dementia risk, we developed a composite score of plasma BEC proteins that may be used to estimate blood-brain barrier integrity and risk for adverse neurovascular outcomes.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , Humans , Endothelial Cells/pathology , Longitudinal Studies , Brain/pathology , Biomarkers/metabolism , Cerebral Small Vessel Diseases/pathology , Magnetic Resonance Imaging
12.
medRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37662256

ABSTRACT

Disease heterogeneity poses a significant challenge for precision diagnostics in both clinical and sub-clinical stages. Recent work leveraging artificial intelligence (AI) has offered promise to dissect this heterogeneity by identifying complex intermediate phenotypes - herein called dimensional neuroimaging endophenotypes (DNEs) - which subtype various neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×1-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs and their polygenic risk scores significantly improved the prediction accuracy for 14 systemic disease categories and mortality. These findings underscore the potential of the nine DNEs to identify individuals at a high risk of developing the four brain diseases during preclinical stages for precision diagnostics. All results are publicly available at: http://labs.loni.usc.edu/medicine/.

13.
Neuroimage ; 280: 120346, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37634885

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. However, the AD mechanism has not yet been fully elucidated to date, hindering the development of effective therapies. In our work, we perform a brain imaging genomics study to link genetics, single-cell gene expression data, tissue-specific gene expression data, brain imaging-derived volumetric endophenotypes, and disease diagnosis to discover potential underlying neurobiological pathways for AD. To do so, we perform brain-wide genome-wide colocalization analyses to integrate multidimensional imaging genomic biobank data. Specifically, we use (1) the individual-level imputed genotyping data and magnetic resonance imaging (MRI) data from the UK Biobank, (2) the summary statistics of the genome-wide association study (GWAS) from multiple European ancestry cohorts, and (3) the tissue-specific cis-expression quantitative trait loci (cis-eQTL) summary statistics from the GTEx project. We apply a Bayes factor colocalization framework and mediation analysis to these multi-modal imaging genomic data. As a result, we derive the brain regional level GWAS summary statistics for 145 brain regions with 482,831 single nucleotide polymorphisms (SNPs) followed by posthoc functional annotations. Our analysis yields the discovery of a potential AD causal pathway from a systems biology perspective: the SNP chr10:124165615:G>A (rs6585827) mutation upregulates the expression of BTBD16 gene in oligodendrocytes, a specialized glial cells, in the brain cortex, leading to a reduced risk of volumetric loss in the entorhinal cortex, resulting in the protective effect on AD. We substantiate our findings with multiple evidence from existing imaging, genetic and genomic studies in AD literature. Our study connects genetics, molecular and cellular signatures, regional brain morphologic endophenotypes, and AD diagnosis, providing new insights into the mechanistic understanding of the disease. Our findings can provide valuable guidance for subsequent therapeutic target identification and drug discovery in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Bayes Theorem , Genome-Wide Association Study , Transcriptome , Brain/diagnostic imaging , Entorhinal Cortex
14.
bioRxiv ; 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37333190

ABSTRACT

The complex biological mechanisms underlying human brain aging remain incompletely understood, involving multiple body organs and chronic diseases. In this study, we used multimodal magnetic resonance imaging and artificial intelligence to examine the genetic architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557 European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-wide significance (P-value<5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 5' untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96×10-2) and AD on WM-BAG (odds ratio=1.04 [1.02, 1.05], P-value=7.18×10-5). Overall, our results provide valuable insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal: https://labs.loni.usc.edu/medicine.

15.
Neurobiol Aging ; 129: 178-184, 2023 09.
Article in English | MEDLINE | ID: mdl-37336172

ABSTRACT

Lipids are essential components of brain structure and shown to affect brain function. Previous studies have shown that aging men undergo greater brain atrophy than women, but whether the associations between lipids and brain atrophy differ by sex is unclear. We examined sex differences in the associations between circulating lipids by liquid chromatography-tandem mass spectrometry and the progression of MRI-derived brain atrophy index Spatial Patterns of Atrophy for Recognition of Brain Aging (SPARE-BA) over an average of 4.7 (SD = 2.3) years in 214 men and 261 women aged 60 or older who were initially cognitively normal using multivariable linear regression, adjusted for age, race, education, and baseline SPARE-BA. We found significant sex interactions for beta-oxidation rate, short-chain acylcarnitines, long-chain ceramides, and very long-chain triglycerides. Lower beta-oxidation rate and short-chain acylcarnitines in women and higher long-chain ceramides and very long-chain triglycerides in men were associated with faster increases in SPARE-BA (accelerated brain aging). Circulating lipid profiles of accelerated brain aging are sex-specific and vary by lipid classes and structure. Mechanisms underlying these sex-specific lipid profiles of brain aging warrant further investigation.


Subject(s)
Aging , Sex Characteristics , Humans , Female , Male , Brain/diagnostic imaging , Brain/pathology , Triglycerides , Ceramides , Atrophy/pathology
16.
Physiol Behav ; 267: 114228, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37156318

ABSTRACT

BACKGROUND/PURPOSE: Obesity in midlife is an established risk factor for dementia. In middle-aged adults, elevated body mass index (BMI) is associated with lower neurocognition and smaller hippocampal volumes. It is unclear whether behavioral weight loss (BWL) can improve neurocognition. The purpose of this study was to evaluate whether BWL, compared to wait list control (WLC), improved hippocampal volume and neurocognition. We also examined if baseline hippocampal volume and neurocognition were associated with weight loss. METHODS: We randomly assigned women with obesity (N = 61; mean±SD age=41.1 ± 9.9 years; BMI=38.6 ± 6.2 kg/m2; and 50.8% Black) to BWL or WLC. Participants completed assessments at baseline and follow-up including T1-weighted structural magnetic resonance imaging scans and the National Institutes of Health (NIH) Toolbox Cognition Battery. RESULTS: The BWL group lost 4.7 ± 4.9% of initial body weight at 16-25 weeks, which was significantly more than the WLC group which gained 0.2 ± 3.5% (p < 0.001). The BWL and WLC groups did not differ significantly in changes in hippocampal volume or neurocognition (ps>0.05). Baseline hippocampal volume and neurocognition scores were not significantly associated with weight loss (ps>0.05). CONCLUSIONS AND IMPLICATIONS: Contrary to our hypothesis, we found no overall benefit of BWL relative to WLC on hippocampal volumes or cognition in young- and middle-aged women. Baseline hippocampal volume and neurocognition were not associated with weight loss.


Subject(s)
Behavior Therapy , Obesity , Adult , Middle Aged , Humans , Female , Treatment Outcome , Behavior Therapy/methods , Obesity/complications , Obesity/diagnostic imaging , Obesity/therapy , Weight Loss , Body Weight
17.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Article in English | MEDLINE | ID: mdl-37147389

ABSTRACT

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Brazil , Brain/diagnostic imaging , Magnetic Resonance Imaging
18.
Neurobiol Aging ; 129: 28-40, 2023 09.
Article in English | MEDLINE | ID: mdl-37257406

ABSTRACT

Elevated plasma neurofilament light chain (NfL) is associated with dementia though underlying mechanisms remain unknown. We examined cross-sectional relationships of time-dependent plasma NfL with selected brain structural magnetic resonance imaging (sMRI) prognostic markers of dementia. The sample was drawn from the Healthy Aging in Neighborhoods of Diversity Across the Life Span (HANDLS) study, selecting participants with complete v1 (2004-2009) and v2 (2009-2013) plasma NfL exposure and ancillary sMRI data at vscan (2011-2015, n = 179, mean v1 to vscan time: 5.4 years). Multivariable-adjusted linear regression models were conducted, overall, by sex, and race, correcting for multiple testing with q-values. NfL(v1) was associated with larger WMLV (both Loge transformed), after 5-6 years' follow-up, overall (ß = +2.131 ± 0.660, b = +0.29, p = 0.001, and q = 0.0029) and among females. NfLv2 was linked to a 125 mm3 lower left hippocampal volume (p = 0.004 and q = 0.015) in reduced models, mainly among males, as was observed for annualized longitudinal change in NfL (δNfLbayes). Among African American adults, NfLv1 was inversely related to total, gray and white matter volumes. Plasma NfL may reflect future brain pathologies in middle-aged adults.


Subject(s)
Dementia , White Matter , Male , Female , Humans , Middle Aged , Intermediate Filaments , Bayes Theorem , Brain/diagnostic imaging , Brain/pathology , Neurofilament Proteins , White Matter/pathology , Dementia/pathology , Biomarkers
19.
Schizophr Res ; 257: 5-18, 2023 07.
Article in English | MEDLINE | ID: mdl-37230043

ABSTRACT

OBJECTIVES: Schizophrenia-related psychosis is associated with abnormalities in white matter (WM) microstructure and structural brain dysconnectivity. However, the pathological process underlying such changes is unknown. We sought to investigate the potential association between peripheral cytokine levels and WM microstructure during the acute phase of first-episode psychosis (FEP) in a cohort of drug-naïve patients. METHODS: Twenty-five non-affective FEP patients and 69 healthy controls underwent MRI scanning and blood collection at study entry. After achieving clinical remission, 21 FEP were reassessed; 38 age and biological sex-matched controls also had a second assessment. We measured fractional anisotropy (FA) of selected WM regions-of-interest (ROIs) and plasma levels of four cytokines (IL-6, IL-10, IFN-γ, and TNF-α). RESULTS: At baseline (acute psychosis), the FEP group showed reduced FA relative to controls in half the examined ROIs. Within the FEP group, IL-6 levels were negatively correlated with FA values. Longitudinally, patients showed increments of FA in several ROIs affected at baseline, and such changes were associated with reductions in IL-6 levels. CONCLUSIONS: A state-dependent process involving an interplay between a pro-inflammatory cytokine and brain WM might be associated with the clinical manifestation of FEP. This association suggests a deleterious effect of IL-6 on WM tracts during the acute phase of psychosis.


Subject(s)
Psychotic Disorders , White Matter , Humans , White Matter/pathology , Cytokines , Longitudinal Studies , Interleukin-6 , Diffusion Tensor Imaging , Brain/pathology , Anisotropy
20.
Schizophr Bull ; 49(4): 1067-1077, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37043772

ABSTRACT

BACKGROUND AND HYPOTHESIS: Two machine learning derived neuroanatomical signatures were recently described. Signature 1 is associated with widespread grey matter volume reductions and signature 2 with larger basal ganglia and internal capsule volumes. We hypothesized that they represent the neurodevelopmental and treatment-responsive components of schizophrenia respectively. STUDY DESIGN: We assessed the expression strength trajectories of these signatures and evaluated their relationships with indicators of neurodevelopmental compromise and with antipsychotic treatment effects in 83 previously minimally treated individuals with a first episode of a schizophrenia spectrum disorder who received standardized treatment and underwent comprehensive clinical, cognitive and neuroimaging assessments over 24 months. Ninety-six matched healthy case-controls were included. STUDY RESULTS: Linear mixed effect repeated measures models indicated that the patients had stronger expression of signature 1 than controls that remained stable over time and was not related to treatment. Stronger signature 1 expression showed trend associations with lower educational attainment, poorer sensory integration, and worse cognitive performance for working memory, verbal learning and reasoning and problem solving. The most striking finding was that signature 2 expression was similar for patients and controls at baseline but increased significantly with treatment in the patients. Greater increase in signature 2 expression was associated with larger reductions in PANSS total score and increases in BMI and not associated with neurodevelopmental indices. CONCLUSIONS: These findings provide supporting evidence for two distinct neuroanatomical signatures representing the neurodevelopmental and treatment-responsive components of schizophrenia.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Antipsychotic Agents/adverse effects , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/complications , Gray Matter , Cerebral Cortex , Neuroimaging , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...